clinux-kerneliteratorinodeext2

Is there a way to create an iterator style function for i_block in C?


I am working on some ext2 filesystem stuff for a school project (implement ls, mkdir, that kind of thing) and have found that I am generating a lot of redundant code for tasks where I need to traverse an inode's i_block. I have functions to count the number of dir entries, search the dir entries for a strcmp name match, reading data, writing data... traversing i_block seems common to many problems. I am attempting to write something akin to an iterator for the i_block to remove this redundancy.

I am wondering what would be a good way to do this? are there examples where this or something similar is done in linux system code? or is this simply a bad idea.

The code I have come up with thus far:

    // returns block number located at iter position
    // accepts a minode which is a struct wrapping an inode (in memory inode)
    // accepts an iter which will self mutate and should start at 0
    int iter_i_block(minode *mip, int *iter) {
      static char buf[BLKSIZE]; // static buffer
      // buffer number used to check if a new block needs to be read in
      static int bufno;
      // inode number used to determine if we are working on a new inode
      static int ino; 
      // block number to return
      int bno;
      // flag for if this a different inode than last time
      int new_ino = 0;

      if (ino != mip->ino) {
        ino = mip->ino;
        new_ino = 1;
      }
      // direct blocks
      if (*iter < 12) {
        bno = mip->inode.i_block[*iter];
        (*iter)++;
        bufno = bno;
        return bno;
      }

      // indirect blocks
      if (*iter < 12 + BLKSIZE_1024 / sizeof(int)) {
        if (!mip->inode.i_block[12])
          return 0;
        if (new_ino || bufno != 12)
          get_block(mip->mount_entry, mip->inode.i_block[12], buf);
        bufno = 12;
        bno = *((int *)buf + (*iter - 12));
        (*iter)++;
        return bno;
      }

      // double indirect blocks (not shown)
      // triple indirect blocks (not shown)
      return 0;
    }

Any advice is appreciated! Thank you


Solution

  • Here is what I am going with for now

    Thanks Gil Hamilton for suggesting to use a struct

    typedef struct blk_iter {
      struct minode *mip;
      // buf contains the nth block
      unsigned int nth;
      // direct block (buf), indirection block(map1),
      // double indirection(map2), triple indirection(map3);
      char buf[BLKSIZE_1024], map1[BLKSIZE_1024], map2[BLKSIZE_1024],
          map3[BLKSIZE_1024];
    } blk_iter;
    
    // returns a char* buffer of BLKSIZE on success
    // null on failure (nothing more to read)
    // must start from nth = -1
    char *get_blk(blk_iter *it, int lbk) {
      // calculations for convience, could be macros
      int blks_per = BLKSIZE_1024 / sizeof(int);
      int direct_start = 0, direct_end = 12, indirect_start = direct_end,
          indirect_end = direct_end + blks_per, double_start = indirect_end,
          double_end = indirect_end + blks_per * blks_per,
          triple_start = double_end,
          triple_end = double_end + blks_per * blks_per * blks_per;
      // pointers for shorter names
      unsigned int *i_block = it->mip->inode.i_block;
      mount_entry *me = it->mip->mount_entry;
      // null check
      if (!it || !it->mip)
        return 0;
      // get blocks based on lbk
      if (lbk < direct_end) {
        // get direct block
        get_block(me, i_block[lbk], it->buf);
      } else if (lbk < indirect_end) {
        // get indirect block
        if (!(it->nth >= indirect_start && it->nth < indirect_end))
          // check if map1 cached
          get_block(me, i_block[12], it->map1);
        get_block(me, it->map1[lbk - indirect_start], it->buf);
      } else if (lbk < double_end) {
        // get double indirect block
        if (!(it->nth >= double_start && it->nth < double_end))
          // check if map2 cached
          get_block(me, i_block[13], it->map2);
        if (!((lbk - double_start) / blks_per ==
              (it->nth - double_start) / blks_per))
          // check if map1 cached
          get_block(me, it->map2[(lbk - double_start) / blks_per], it->map1);
        get_block(me, it->map1[(lbk - double_start) % blks_per], it->buf);
      } else if (lbk < triple_end) {
        // triple  indirect blocks
        if (!(it->nth >= triple_start && it->nth < triple_end))
          // check if map3 cached
          get_block(me, i_block[12], it->map3);
        if (!((lbk - triple_start) / (blks_per * blks_per) ==
              (it->nth - triple_start) / (blks_per * blks_per)))
          // check if map2 cached
          get_block(me, it->map3[(lbk - triple_start) / (blks_per * blks_per)],
                    it->map2);
        if (!((lbk - triple_start) / blks_per ==
              (it->nth - triple_start) / blks_per))
          // check if map1 cached
          get_block(me, it->map2[(lbk - triple_start) / blks_per], it->map1);
        get_block(me, it->map1[(lbk - triple_start) % blks_per], it->buf);
      }
      it->nth = lbk;
      return it->buf;
    }