I am using the following R code to run several linear regression models and extract results to dataframe:
library(tidyverse)
library(broom)
data <- mtcars
outcomes <- c("wt", "mpg", "hp", "disp")
exposures <- c("gear", "vs", "am")
models <- expand.grid(outcomes, exposures) %>%
group_by(Var1) %>% rowwise() %>%
summarise(frm = paste0(Var1, "~factor(", Var2, ")")) %>%
group_by(model_id = row_number(),frm) %>%
do(tidy(lm(.$frm, data = data))) %>%
mutate(lci = estimate-(1.96*std.error),
uci = estimate+(1.96*std.error))
How can I modify my code to use robust standard errors similar to STATA?
* example of using robust standard errors in STATA
regress y x, robust
There is a comprehensive discussion about the robust standard errors in lm models at stackexchange.
You can update your code in the following way:
library(sandwich)
models <- expand.grid(outcomes, exposures) %>%
group_by(Var1) %>% rowwise() %>%
summarise(frm = paste0(Var1, "~factor(", Var2, ")")) %>%
group_by(model_id = row_number(),frm) %>%
do(cbind(
tidy(lm(.$frm, data = data)),
robSE = sqrt(diag(vcovHC(lm(.$frm, data = data), type="HC1"))) )
) %>%
mutate(
lci = estimate - (1.96 * std.error),
uci = estimate + (1.96 * std.error),
lciR = estimate - (1.96 * robSE),
uciR = estimate + (1.96 * robSE)
)
The important line is this:
sqrt(diag(vcovHC(lm(.$frm, data = data), type="HC1"))) )
Function vcovHC
returns covariance matrix. You need to extract variances on the diagonal diag
and take compute a square root sqrt
.