I have the following query where I am getting data of last 3 years, month wise and I am also getting the count of months (buckets) in which the data is present. Following is my query :
{
"size": 0,
"query": {
"bool": {
"filter": {
"terms": {
"compId": [
111,
112
]
}
},
"must": {
"range": {
"dateCreated": {
"from": "2016-04-01",
"to": "2019-03-31",
"format": "yyyy-MM-dd"
}
}
}
}
},
"aggs": {
"grp_company": {
"terms": {
"field": "compId"
},
"aggs": {
"data_per_month": {
"date_histogram": {
"field": "dateCreated",
"interval": "month"
}
},
"count_buckets": {
"stats_bucket": { --> I am getting the count of buckets here
"buckets_path": "data_per_month._count"
}
}
}
}
}
}
However, Now I want to have only those date_histograms whose bucket count is greater than 30. Is it possible in ElasticSearch? If yes, then how?
The above query gives me the following result:
{
"took": 68,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 454566,
"max_score": 0,
"hits": []
},
"aggregations": {
"grp_company": {
"doc_count_error_upper_bound": 0,
"sum_other_doc_count": 0,
"buckets": [
{
"key": 111,
"doc_count": 609014,
"data_per_month": {
"buckets": [
{
"key_as_string": "2017-07-01T00:00:00.000Z",
"key": 1498867200000,
"doc_count": 638
},
{
"key_as_string": "2017-08-01T00:00:00.000Z",
"key": 1501545600000,
"doc_count": 512
},
{
"key_as_string": "2017-09-01T00:00:00.000Z",
"key": 1504224000000,
"doc_count": 491
},
{
"key_as_string": "2017-10-01T00:00:00.000Z",
"key": 1506816000000,
"doc_count": 548
},
{
"key_as_string": "2017-11-01T00:00:00.000Z",
"key": 1509494400000,
"doc_count": 504
},
{
"key_as_string": "2017-12-01T00:00:00.000Z",
"key": 1512086400000,
"doc_count": 415
},
{
"key_as_string": "2018-01-01T00:00:00.000Z",
"key": 1514764800000,
"doc_count": 759
},
{
"key_as_string": "2018-02-01T00:00:00.000Z",
"key": 1517443200000,
"doc_count": 98564
},
{
"key_as_string": "2018-03-01T00:00:00.000Z",
"key": 1519862400000,
"doc_count": 29185
},
{
"key_as_string": "2018-04-01T00:00:00.000Z",
"key": 1522540800000,
"doc_count": 38522
},
{
"key_as_string": "2018-05-01T00:00:00.000Z",
"key": 1525132800000,
"doc_count": 22821
},
{
"key_as_string": "2018-06-01T00:00:00.000Z",
"key": 1527811200000,
"doc_count": 31076
},
{
"key_as_string": "2018-07-01T00:00:00.000Z",
"key": 1530403200000,
"doc_count": 67150
},
{
"key_as_string": "2018-08-01T00:00:00.000Z",
"key": 1533081600000,
"doc_count": 13464
},
{
"key_as_string": "2018-09-01T00:00:00.000Z",
"key": 1535760000000,
"doc_count": 59498
},
{
"key_as_string": "2018-10-01T00:00:00.000Z",
"key": 1538352000000,
"doc_count": 27222
},
{
"key_as_string": "2018-11-01T00:00:00.000Z",
"key": 1541030400000,
"doc_count": 46009
},
{
"key_as_string": "2018-12-01T00:00:00.000Z",
"key": 1543622400000,
"doc_count": 55696
},
{
"key_as_string": "2019-01-01T00:00:00.000Z",
"key": 1546300800000,
"doc_count": 45538
},
{
"key_as_string": "2019-02-01T00:00:00.000Z",
"key": 1548979200000,
"doc_count": 49606
},
{
"key_as_string": "2019-03-01T00:00:00.000Z",
"key": 1551398400000,
"doc_count": 20796
}
]
},
"count_buckets": {
"count": 21,
"min": 415,
"max": 98564,
"avg": 29000.666666666668,
"sum": 609014
}
},
{
"key": 112,
"doc_count": 98564,
"data_per_month": {
"buckets": [
{
"key_as_string": "2016-09-01T00:00:00.000Z",
"key": 1472688000000,
"doc_count": 3123
},
{
"key_as_string": "2016-10-01T00:00:00.000Z",
"key": 1475280000000,
"doc_count": 3156
},
{
"key_as_string": "2016-11-01T00:00:00.000Z",
"key": 1477958400000,
"doc_count": 1489
},
{
"key_as_string": "2016-12-01T00:00:00.000Z",
"key": 1480550400000,
"doc_count": 1948
},
{
"key_as_string": "2017-01-01T00:00:00.000Z",
"key": 1483228800000,
"doc_count": 3996
},
{
"key_as_string": "2017-02-01T00:00:00.000Z",
"key": 1485907200000,
"doc_count": 2766
},
{
"key_as_string": "2017-03-01T00:00:00.000Z",
"key": 1488326400000,
"doc_count": 3869
},
{
"key_as_string": "2017-04-01T00:00:00.000Z",
"key": 1491004800000,
"doc_count": 6251
},
{
"key_as_string": "2017-05-01T00:00:00.000Z",
"key": 1493596800000,
"doc_count": 2640
},
{
"key_as_string": "2017-06-01T00:00:00.000Z",
"key": 1496275200000,
"doc_count": 5541
},
{
"key_as_string": "2017-07-01T00:00:00.000Z",
"key": 1498867200000,
"doc_count": 5686
},
{
"key_as_string": "2017-08-01T00:00:00.000Z",
"key": 1501545600000,
"doc_count": 6524
},
{
"key_as_string": "2017-09-01T00:00:00.000Z",
"key": 1504224000000,
"doc_count": 8351
},
{
"key_as_string": "2017-10-01T00:00:00.000Z",
"key": 1506816000000,
"doc_count": 4848
},
{
"key_as_string": "2017-11-01T00:00:00.000Z",
"key": 1509494400000,
"doc_count": 4209
},
{
"key_as_string": "2017-12-01T00:00:00.000Z",
"key": 1512086400000,
"doc_count": 1092
},
{
"key_as_string": "2018-01-01T00:00:00.000Z",
"key": 1514764800000,
"doc_count": 2425
},
{
"key_as_string": "2018-02-01T00:00:00.000Z",
"key": 1517443200000,
"doc_count": 336
},
{
"key_as_string": "2018-03-01T00:00:00.000Z",
"key": 1519862400000,
"doc_count": 5092
},
{
"key_as_string": "2018-04-01T00:00:00.000Z",
"key": 1522540800000,
"doc_count": 1354
},
{
"key_as_string": "2018-05-01T00:00:00.000Z",
"key": 1525132800000,
"doc_count": 2022
},
{
"key_as_string": "2018-06-01T00:00:00.000Z",
"key": 1527811200000,
"doc_count": 1981
},
{
"key_as_string": "2018-07-01T00:00:00.000Z",
"key": 1530403200000,
"doc_count": 1751
},
{
"key_as_string": "2018-08-01T00:00:00.000Z",
"key": 1533081600000,
"doc_count": 1705
},
{
"key_as_string": "2018-09-01T00:00:00.000Z",
"key": 1535760000000,
"doc_count": 2617
},
{
"key_as_string": "2018-10-01T00:00:00.000Z",
"key": 1538352000000,
"doc_count": 2217
},
{
"key_as_string": "2018-11-01T00:00:00.000Z",
"key": 1541030400000,
"doc_count": 1734
},
{
"key_as_string": "2018-12-01T00:00:00.000Z",
"key": 1543622400000,
"doc_count": 1962
},
{
"key_as_string": "2019-01-01T00:00:00.000Z",
"key": 1546300800000,
"doc_count": 2601
},
{
"key_as_string": "2019-02-01T00:00:00.000Z",
"key": 1548979200000,
"doc_count": 2573
},
{
"key_as_string": "2019-03-01T00:00:00.000Z",
"key": 1551398400000,
"doc_count": 2705
}
]
},
"count_buckets": {
"count": 31,
"min": 336,
"max": 8351,
"avg": 3179.483870967742,
"sum": 98564
}
}
]
}
}
}
I want only those buckets whose "count" in "count_buckets" is greater than 30.
If I understood correctly, what you are trying to do is filter the bucket based on the count_buckets.count
value. If the number of buckets created by date_histogram
are greater than 30
then the bucket (against compId
) should be retained else it should be excluded. In other words you want to select a bucket based on a condition. For this you have already added stats_bucket
aggregation to get the count of buckets. Now this can be used as a parameter for bucket selector aggregation. Bucket selector aggregation exactly does what is required.
Just add the bucket_selector
aggregation to your query as below:
{
"size": 0,
"query": {
"bool": {
"filter": {
"terms": {
"compId": [
111,
112
]
}
},
"must": {
"range": {
"dateCreated": {
"from": "2016-04-01",
"to": "2019-03-31",
"format": "yyyy-MM-dd"
}
}
}
}
},
"aggs": {
"grp_company": {
"terms": {
"field": "compId"
},
"aggs": {
"data_per_month": {
"date_histogram": {
"field": "dateCreated",
"interval": "month"
}
},
"count_buckets": {
"stats_bucket": {
"buckets_path": "data_per_month._count"
}
},
"bucket_filter": {
"bucket_selector": {
"buckets_path": {
"bucket_count": "count_buckets.count"
},
"script": "params.bucket_count > 30"
}
}
}
}
}
}