I have a dataframe df.sample
like this
id <- c("A","A","A","A","A","A","A","A","A","A","A")
date <- c("2018-11-12","2018-11-12","2018-11-12","2018-11-12","2018-11-12",
"2018-11-12","2018-11-12","2018-11-14","2018-11-14","2018-11-14",
"2018-11-12")
hour <- c(8,8,9,9,13,13,16,6,7,19,7)
min <- c(47,59,6,18,22,36,12,32,12,21,47)
value <- c(70,70,86,86,86,74,81,77,79,83,91)
df.sample <- data.frame(id,date,hour,min,value,stringsAsFactors = F)
df.sample$date <- as.Date(df.sample$date,format="%Y-%m-%d")
I have another data frame df.state
like this
id <- c("A","A","A")
starttime <- c("2018-11-12 08:59:00","2018-11-14 06:24:17","2018-11-15 09:17:00")
endtime <- c("2018-11-12 15:57:00","2018-11-14 17:22:16","2018-11-15 12:17:32")
state <- c("Pass","Pass","Pass")
df.state <- data.frame(id,starttime,endtime,state,stringsAsFactors = F)
df.state$starttime <- as.POSIXct(df.state$starttime,format="%Y-%m-%d %H:%M:%S")
df.state$endtime <- as.POSIXct(df.state$endtime,format="%Y-%m-%d %H:%M:%S")
I am trying to merge these 2 data frames based on a condition
if the hour
and min
in df.sample
is within the starttime
and endtime
of df.state
, then merge state = Pass
in the df.sample
.
For example, the row 2 in df.sample
has hour = 8
, min = 59
and since it is within the starttime = 2018-11-12 08:59:00
in df.state
, the value Pass
is added
Here is my desired output
id date hour min value state
A 2018-11-12 8 47 70
A 2018-11-12 8 59 70 Pass
A 2018-11-12 9 6 86 Pass
A 2018-11-12 9 18 86 Pass
A 2018-11-12 13 22 86 Pass
A 2018-11-12 13 36 74 Pass
A 2018-11-12 16 12 81
A 2018-11-14 6 32 77 Pass
A 2018-11-14 7 12 79 Pass
A 2018-11-14 19 21 83
A 2018-11-12 7 47 91
I am able to merge these 2 dataframes like this but not able to look up hour and min of df.sample in the starttime and endtime of df.state
library(tidyverse)
df.sample <- df.sample %>%
left_join(df.state)
Can someone point me in the right direction
Using non-equi join from data.table
package is much faster and easier if you happen to have big data frames: Benchmark | Video
library(data.table)
## convert both data.frames to data.tables by reference
setDT(df.sample)
setDT(df.state)
## create a `time` column in df.sample
df.sample[, time := as.POSIXct(paste0(date, " ", hour, ":", min, ":00"))]
## change column order
setcolorder(df.sample, c("id", "time"))
# join by id and time within start & end time limits
# "x." is used so we can refer to the column in other data.table explicitly
df.state[df.sample, .(id, time, date, hour, min, value, state = x.state),
on = .(id, starttime <= time, endtime >= time)]
#> id time date hour min value state
#> 1: A 2018-11-12 08:47:00 2018-11-12 8 47 70 <NA>
#> 2: A 2018-11-12 08:59:00 2018-11-12 8 59 70 Pass
#> 3: A 2018-11-12 09:06:00 2018-11-12 9 6 86 Pass
#> 4: A 2018-11-12 09:18:00 2018-11-12 9 18 86 Pass
#> 5: A 2018-11-12 13:22:00 2018-11-12 13 22 86 Pass
#> 6: A 2018-11-12 13:36:00 2018-11-12 13 36 74 Pass
#> 7: A 2018-11-12 16:12:00 2018-11-12 16 12 81 <NA>
#> 8: A 2018-11-14 06:32:00 2018-11-14 6 32 77 Pass
#> 9: A 2018-11-14 07:12:00 2018-11-14 7 12 79 Pass
#> 10: A 2018-11-14 19:21:00 2018-11-14 19 21 83 <NA>
#> 11: A 2018-11-12 07:47:00 2018-11-12 7 47 91 <NA>
### remove NA
df.state[df.sample, .(id, time, date, hour, min, value, state = x.state),
on = .(id, starttime <= time, endtime >= time), nomatch = 0L]
#> id time date hour min value state
#> 1: A 2018-11-12 08:59:00 2018-11-12 8 59 70 Pass
#> 2: A 2018-11-12 09:06:00 2018-11-12 9 6 86 Pass
#> 3: A 2018-11-12 09:18:00 2018-11-12 9 18 86 Pass
#> 4: A 2018-11-12 13:22:00 2018-11-12 13 22 86 Pass
#> 5: A 2018-11-12 13:36:00 2018-11-12 13 36 74 Pass
#> 6: A 2018-11-14 06:32:00 2018-11-14 6 32 77 Pass
#> 7: A 2018-11-14 07:12:00 2018-11-14 7 12 79 Pass
Created on 2019-05-23 by the reprex package (v0.3.0)