pythonpandaspercentile

Rank Pandas dataframe by quantile


I have a Pandas dataframe in which each column represents a separate property, and each row holds the properties' value on a specific date:

import pandas as pd

dfstr = \
'''         AC        BO         C       CCM        CL       CRD        CT        DA        GC        GF
2010-01-19  0.844135 -0.194530 -0.231046  0.245615 -0.581238 -0.593562  0.057288  0.655903  0.823997  0.221920
2010-01-20 -0.204845 -0.225876  0.835611 -0.594950 -0.607364  0.042603  0.639168  0.816524  0.210653  0.237833
2010-01-21  0.824852 -0.216449 -0.220136  0.234343 -0.611756 -0.624060  0.028295  0.622516  0.811741  0.201083'''
df = pd.read_csv(pd.compat.StringIO(dfstr), sep='\s+')

Using the rank method, I can find the percentile rank of each property with respect to a specific date:

df.rank(axis=1, pct=True)

Output:

             AC   BO    C  CCM   CL  CRD   CT   DA   GC   GF
2010-01-19  1.0  0.4  0.3  0.7  0.2  0.1  0.5  0.8  0.9  0.6
2010-01-20  0.4  0.3  1.0  0.2  0.1  0.5  0.8  0.9  0.6  0.7
2010-01-21  1.0  0.4  0.3  0.7  0.2  0.1  0.5  0.8  0.9  0.6

What I'd like to get instead is the quantile (eg quartile, quintile, decile, etc) rank of each property. For example, for quintile rank my desired output would be:

             AC   BO    C  CCM   CL  CRD   CT   DA   GC   GF
2010-01-19   5    2     2  4     1   1     3    4    5    3
2010-01-20   2    2     5  1     1   3     4    5    3    4
2010-01-21   5    2     2  4     1   1     3    4    5    3

I might be missing something, but there doesn't seem to a built-in way to do this kind of quantile ranking with Pandas. What's the simplest way to get my desired output?


Solution

  • Method 1 mul & np.ceil

    You were quite close with the rank. Just multiplying by 5 with .mul to get the desired quantile, also rounding up with np.ceil:

    np.ceil(df.rank(axis=1, pct=True).mul(5))
    

    Output

                 AC   BO    C  CCM   CL  CRD   CT   DA   GC   GF
    2010-01-19  5.0  2.0  2.0  4.0  1.0  1.0  3.0  4.0  5.0  3.0
    2010-01-20  2.0  2.0  5.0  1.0  1.0  3.0  4.0  5.0  3.0  4.0
    2010-01-21  5.0  2.0  2.0  4.0  1.0  1.0  3.0  4.0  5.0  3.0
    

    If you want integers use astype:

    np.ceil(df.rank(axis=1, pct=True).mul(5)).astype(int)
    

    Or even better Since pandas version 0.24.0 we have nullable integer type: Int64.
    So we can use :

    np.ceil(df.rank(axis=1, pct=True).mul(5)).astype('Int64')
    

    Output

                AC  BO  C  CCM  CL  CRD  CT  DA  GC  GF
    2010-01-19   5   2  2    4   1    1   3   4   5   3
    2010-01-20   2   2  5    1   1    3   4   5   3   4
    2010-01-21   5   2  2    4   1    1   3   4   5   3
    

    Method 2 scipy.stats.percentileofscore

    d = df.apply(lambda x: [np.ceil(stats.percentileofscore(x, a, 'rank')*0.05) for a in x], axis=1).values
    
    pd.DataFrame(data=np.concatenate(d).reshape(d.shape[0], len(d[0])), 
                 columns=df.columns, 
                 dtype='int', 
                 index=df.index)
    

    Output

                AC  BO  C  CCM  CL  CRD  CT  DA  GC  GF
    2010-01-19   5   2  2    4   1    1   3   4   5   3
    2010-01-20   2   2  5    1   1    3   4   5   3   4
    2010-01-21   5   2  2    4   1    1   3   4   5   3