I am trying to use the pre-made estimator tf.estimator.DNNClassifier
to use on the MNIST dataset. I load the dataset from tensorflow_dataset
.
I pursue the following four steps: first building the dataset pipeline and defining the input function:
## Step 1
mnist, info = tfds.load('mnist', with_info=True)
ds_train_orig, ds_test = mnist['train'], mnist['test']
def train_input_fn(dataset, batch_size):
dataset = dataset.map(lambda x:({'image-pixels':tf.reshape(x['image'], (-1,))},
x['label']))
return dataset.shuffle(1000).repeat().batch(batch_size)
Then, in step 2, I define the feature column with a single key, and shape 784:
## Step 2:
image_feature_column = tf.feature_column.numeric_column(key='image-pixels',
shape=(28*28))
image_feature_column
NumericColumn(key='image-pixels', shape=(784,), default_value=None, dtype=tf.float32, normalizer_fn=None)
Step 3, I instantiated the estimator as follows:
## Step 3:
dnn_classifier = tf.estimator.DNNClassifier(
feature_columns=image_feature_column,
hidden_units=[16, 16],
n_classes=10)
And finally, step 4 using the estimator by calling the .train()
method:
## Step 4:
dnn_classifier.train(
input_fn=lambda:train_input_fn(ds_train_orig, batch_size=32),
#lambda:iris_data.train_input_fn(train_x, train_y, args.batch_size),
steps=20)
But this reuslts in the following error. It looks like the problem has arised from the dataset.
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-21-95736cd65e45> in <module>
2 dnn_classifier.train(
3 input_fn=lambda: train_input_fn(ds_train_orig, batch_size=32),
----> 4 steps=20)
~/anaconda3/envs/tf2.0-beta/lib/python3.7/site-packages/tensorflow/python/framework/ops.py in internal_convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, ctx, accept_symbolic_tensors, accept_composite_tensors)
1183 graph = get_default_graph()
1184 if not graph.building_function:
-> 1185 raise RuntimeError("Attempting to capture an EagerTensor without "
1186 "building a function.")
1187 return graph.capture(value, name=name)
RuntimeError: Attempting to capture an EagerTensor without building a function.
I think the graph construction gets weird if you load a tensorflow_datasets dataset outside the input_fn
. I followed the TF2.0 migration guide example and this does not give errors. Please note that I have not tested for model correctness and you will have to modify input_fn
logic a bit to get the function for eval.
# Define the estimator's input_fn
def input_fn():
datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True)
mnist_train, mnist_test = datasets['train'], datasets['test']
dataset = mnist_train
dataset = mnist_train.map(lambda x, y:({'image-pixels':tf.reshape(x, (-1,))},
y))
return dataset.shuffle(1000).repeat().batch(32)
image_feature_column = tf.feature_column.numeric_column(key='image-pixels',
shape=(28*28))
dnn_classifier = tf.estimator.DNNClassifier(
feature_columns=[image_feature_column],
hidden_units=[16, 16],
n_classes=10)
dnn_classifier.train(
input_fn=input_fn,
steps=200)
I get a bunch of deprecation warnings at this point, but seems like the estimator is trained.