I'm working on a CUDA matrix multiplication, but I did some modifications to observe how they affect performances.
I want to observe the behavior and performances of a matrix multiplication kernel, making some changes. I'm measuring the changes in GPU events time, I'm testing it in two speicific different conditions:
I have an amount of matrices (say matN
) for A, B and C, then I transfer (H2D) one matrix for A, one for B and multply them, to transfer back (D2H) one C;
I have matN
for A, B and C, but I transfer >1(say chunk
) matrices for A and for B, I compute exactly chunk
multiplications, and transfer back chunk
result matrices C.
In the first case (chunk = 1
) all works as expected, but in the second case (chunk > 1
) I get some of Cs are correct, while others are not.
But if I put a cudaDeviceSynchronize()
after the cudaMemcpyAsync
, I get correct results.
Here's the code doing what I've just described:
/**** main.cpp ****/
int chunk = matN/iters;
#ifdef LOWPAR
GRIDx= 1;
GRIDy= 1;
label="LOW";
#else
int sizeX = M;
int sizeY = N;
GRIDx = ceil((sizeX)/BLOCK);
GRIDy = ceil((sizeY)/BLOCK);
label="";
#endif
const int bytesA = M*K*sizeof(float);
const int bytesB = K*N*sizeof(float);
const int bytesC = M*N*sizeof(float);
//device mem allocation
float *Ad, *Bd, *Cd;
gpuErrchk( cudaMalloc((void **)&Ad, bytesA*chunk) );
gpuErrchk( cudaMalloc((void **)&Bd, bytesB*chunk) );
gpuErrchk( cudaMalloc((void **)&Cd, bytesC*chunk) );
//host pinned mem allocation
float *A, *B, *C;
gpuErrchk( cudaMallocHost((void **)&A, bytesA*matN) );
gpuErrchk( cudaMallocHost((void **)&B, bytesB*matN) );
gpuErrchk( cudaMallocHost((void **)&C, bytesC*matN) );
//host data init
for(int i=0; i<matN; ++i){
randomMatrix(M, K, A+(i*M*K));
randomMatrix(K, N, B+(i*K*N));
}
//event start
createAndStartEvent(&startEvent, &stopEvent);
if (square)
{
label += "SQUARE";
int size = N*N;
for (int i = 0; i < iters; ++i) {
int j = i%nStream;
int idx = i*size*chunk;
newSquareMatMulKer(A+idx, B+idx, C+idx, Ad, Bd, Cd, N, chunk, stream[j]);
}
}
else {
...
}
msTot = endEvent(&startEvent, &stopEvent);
#ifdef MEASURES
printMeasures(square, label, msTot, millis.count(), matN, iters, devId);
#else
float *_A, *_B, *_C, *tmpC;
tmpC = (float *)calloc(1,bytesC*chunk);
for (int s=0; s<matN; ++s)
{
_A = A+(s*M*K);
_B = B+(s*K*N);
_C = C+(s*M*N);
memset(tmpC, 0, bytesC*chunk);
hostMatMul(_A, _B, tmpC, M, K, N);
checkMatEquality(_C, tmpC, M, N);
}
#endif
/**** matmul.cu ****/
__global__ void squareMatMulKernel(float* A, float* B, float* C, int N, int chunk) {
int ROW = blockIdx.x*blockDim.x+threadIdx.x;
int COL = blockIdx.y*blockDim.y+threadIdx.y;
if (ROW<N && COL<N) {
int size=N*N;
int offs = 0;
float tmpSum=0.0f;
for (int s=0; s<chunk; ++s)
{
offs = s*size;
tmpSum = 0.0f;
for (int i = 0; i < N; ++i) {
tmpSum += A[offs+(ROW*N)+i] * B[offs+(i*N)+COL];
}
C[offs+(ROW*N)+COL] = tmpSum;
}
}
return ;
}
void newSquareMatMulKer(float *A, float *B, float *C, float *Ad, float *Bd, float *Cd,
int n, int chunk, cudaStream_t strm)
{
int size = n*n;
int bytesMat = size*sizeof(float);
dim3 dimBlock(BLOCK,BLOCK,1);
dim3 dimGrid(GRIDx, GRIDy,1);
gpuErrchk( cudaMemcpyAsync(Ad, A, bytesMat*chunk, cudaMemcpyHostToDevice, strm) );
gpuErrchk( cudaMemcpyAsync(Bd, B, bytesMat*chunk, cudaMemcpyHostToDevice, strm) );
#ifdef LOWPAR
squareMatMulGridStrideKer<<<dimGrid, dimBlock, 0, strm>>>(Ad, Bd, Cd, n, chunk);
#else
squareMatMulKernel<<<dimGrid, dimBlock, 0, strm>>>(Ad, Bd, Cd, n, chunk);
#endif
squareMatMulKernel<<<dimGrid, dimBlock, 0, strm>>>(Ad, Bd, Cd, n, chunk);
gpuErrchk( cudaMemcpyAsync( C, Cd, bytesMat*chunk, cudaMemcpyDeviceToHost, strm) );
cudaDeviceSynchronize();
^ ^ ^ ^ ^ ^
}
I tried to debug using cuda-gdb but nothing strange showed up, gpuErrchk
doesn't throw errors in CUDA API calls.
I run the code using memcheck too, both with and without cudaDeviceSynchronize
and I got no error.
I think it can be a synchronization issue, but I can't understand the reason behind that. Can someone spot where I'm wrong? Other code advices are really appreciated too.
If you are using multiples streams, you may override Ad
and Bd
before using them.
Example with iters = 2
and nStream = 2
:
for (int i = 0; i < iters; ++i) {
int j = i%nStream;
int idx = i*size*chunk;
newSquareMatMulKer(A+idx, B+idx, C+idx, Ad, Bd, Cd, N, chunk, stream[j]);
}
From this loop, you will call
newSquareMatMulKer(A, B, C, Ad, Bd, Cd, N, chunk, stream[0]); // call 0
newSquareMatMulKer(A+idx, B+idx, C+idx, Ad, Bd, Cd, N, chunk, stream[1]); // call 1
As you are using the same memory area on device for both call, you may have several synchronizations issues:
call 1
start to copy A
and B
on device before call 0:squareMatMulKernel
end, so you may use incorrect values of A
and/or B
to compute your first iteration.
call 1:squareMatMulKernel
start before you retrieve the values of C
from call 0, so you may override C
with values from call 1
.
To fix this problem, I see two approaches:
Using synchronization as in your example with cudaDeviceSynchronize();
.
You can allocate more memory two device side (one workspace per stream), for example.
''
//device mem allocation
float *Ad, *Bd, *Cd;
gpuErrchk( cudaMalloc((void **)&Ad, bytesA*chunk*nStream) );
gpuErrchk( cudaMalloc((void **)&Bd, bytesB*chunk*nStream) );
gpuErrchk( cudaMalloc((void **)&Cd, bytesC*chunk*nStream) );
/* code here */
for (int i = 0; i < iters; ++i) {
int j = i%nStream;
int idx = i*size*chunk;
int offset_stream = j*size*chunk;
newSquareMatMulKer(A+idx, B+idx, C+idx,
Ad + offset_stream ,
Bd + offset_stream ,
Cd + offset_stream , N, chunk, stream[j]);
}
In this case you don't need synchronization before the end of the loop.