I separated the 3 channels of an colour image. I created a new NumPy array of the same size as the image, and stored the 3 channels of the image into 3 slices of the 3D NumPy array. After plotting the NumPy array, the plotted image is not same as original image. Why is this happening?
Both img
and new_img
array have same elements, but image is different.
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
import numpy as np
img=mpimg.imread('/storage/emulated/0/1sumint/kali5.jpg')
new_img=np.empty(img.shape)
new_img[:,:,0]=img[:,:,0]
new_img[:,:,1]=img[:,:,1]
new_img[:,:,2]=img[:,:,2]
plt.imshow(new_img)
plt.show()
Expect the same image as original image.
The problem is that your new image will be created with the default data type of float64
on this line:
new_img=np.empty(img.shape)
unless you specify a different dtype
.
You can either (best) copy the original image's dtype
like this:
new_img = np.empty(im.shape, dtype=img.dtype)
or use something like this:
new_img = np.zeros_like(im)
or (worst) specify one you happen to know matches your data, like this,
new_img = np.empty(im.shape, dtype=np.uint8)
I presume you have some reason for copying one channel at a time, but if not, you can avoid all the foregoing issues and just do:
new_img = np.copy(img)