I have a database with the following stats
Tables Data Index Total
11 579,6 MB 0,9 GB 1,5 GB
So as you can see the Index is close to 2x bigger. And there is one table with ~7 million rows that takes up at least 99% of this.
I also have two indexes that are very similar
a) UNIQUE KEY `idx_customer_invoice` (`customer_id`,`invoice_no`),
b) KEY `idx_customer_invoice_order` (`customer_id`,`invoice_no`,`order_no`)
Update: Here is the table definition (at least structurally) of the largest table
CREATE TABLE `invoices` (
`id` int(10) unsigned NOT NULL auto_increment,
`customer_id` int(10) unsigned NOT NULL,
`order_no` varchar(10) default NULL,
`invoice_no` varchar(20) default NULL,
`customer_no` varchar(20) default NULL,
`name` varchar(45) NOT NULL default '',
`archived` tinyint(4) default NULL,
`invoiced` tinyint(4) default NULL,
`time` timestamp NOT NULL default CURRENT_TIMESTAMP on update CURRENT_TIMESTAMP,
`group` int(11) default NULL,
`customer_group` int(11) default NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `idx_customer_invoice` (`customer_id`,`invoice_no`),
KEY `idx_time` (`time`),
KEY `idx_order` (`order_no`),
KEY `idx_customer_invoice_order` (`customer_id`,`invoice_no`,`order_no`)
) ENGINE=InnoDB AUTO_INCREMENT=9146048 DEFAULT CHARSET=latin1 |
Update 2:
mysql> show indexes from invoices;
+----------+------------+----------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+----------+------------+----------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
| invoices | 0 | PRIMARY | 1 | id | A | 7578066 | NULL | NULL | | BTREE | |
| invoices | 0 | idx_customer_invoice | 1 | customer_id | A | 17 | NULL | NULL | | BTREE | |
| invoices | 0 | idx_customer_invoice | 2 | invoice_no | A | 7578066 | NULL | NULL | YES | BTREE | |
| invoices | 1 | idx_time | 1 | time | A | 541290 | NULL | NULL | | BTREE | |
| invoices | 1 | idx_order | 1 | order_no | A | 6091 | NULL | NULL | YES | BTREE | |
| invoices | 1 | idx_customer_invoice_order | 1 | customer_id | A | 17 | NULL | NULL | | BTREE | |
| invoices | 1 | idx_customer_invoice_order | 2 | invoice_no | A | 7578066 | NULL | NULL | YES | BTREE | |
| invoices | 1 | idx_customer_invoice_order | 3 | order_no | A | 7578066 | NULL | NULL | YES | BTREE | |
+----------+------------+----------------------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+
My questions are:
You can remove index A, because, as you have noted, it is a subset of another index. And it's possible to do this without disrupting normal processing.
The size of the index files is not alarming in itself and it can easily be true that the net benefit is positive. In other words, the usefulness and value of an index shouldn't be discounted because it results in a large file.
Index design is a complex and subtle art involving a deep understanding of the query optimizer explanations and extensive testing. But one common mistake is to include too few fields in an index in order to make it smaller. Another is to test indexes with insufficient, or insufficiently representative data.