This is an example of the data I have in my dataframe:
test = pd.DataFrame({
'month': [1,2,3,4,5,6,7,8,9],
'new': [23,45,67,89,12,34,56,90,12],
'drop': [2,4,7,9,1,4,6,9,1],
})
month new drop
0 1 23 2
1 2 45 4
2 3 67 7
3 4 89 9
4 5 12 1
5 6 34 4
6 7 56 6
7 8 90 9
8 9 12 1
I need to calculate the monthly churn rate. I need to sum 2 rows in the new
column and then divide the value in drop
by this sum (in %).
month 1: 2*100/23
month 2: 4*100/(23+45-2)
month 3: 7*100/(23+45+67-2-4)
etc.
Could anyone, please, suggest an elegant way of doing this?
You need:
test['drop'].mul(100).div((test['new'].cumsum() - test['drop'].cumsum().shift()).fillna(test['new']))
Output:
0 8.695652
1 6.060606
2 5.426357
3 4.265403
4 0.467290
5 1.619433
6 2.006689
7 2.349869
8 0.259067
dtype: float64
Explanation:
(test['new'].cumsum() - test['drop'].cumsum().shift()).fillna(test['new'])
Provides the cumsum of new
with subtraction with previous drop
cumsum.
Output (comments added for explanation):
0 23.0 # 23
1 66.0 # 23+45-2
2 129.0 # 23+45+67-2-4
3 211.0
4 214.0
5 247.0
6 299.0
7 383.0
8 386.0