I'm trying to convert parts of a Keras DarkNet code to try to make the code run faster. Here is the code I'm trying to optimize:
model_image_size = (416, 416)
import cv2
from PIL import Image
frame = cv2.imread("test.png", cv2.IMREAD_COLOR)
im = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
im = Image.fromarray(im).crop((1625, 785, 1920, 1080)) # crop ROI
resized_image = im.resize(tuple(reversed(model_image_size)), Image.BICUBIC)
image_data = np.array(resized_image, dtype='float32')
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
return image_data
This is my attempt to achieve the same output without using the intermediate PIL coversion to reduce time:
model_image_size = (416, 416)
import cv2
frame = cv2.imread("test.png", cv2.IMREAD_COLOR)
frame = frame[785:1080,1625:1920] # crop ROI
im = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
resized_image = cv2.resize(im, model_image_size, interpolation = cv2.INTER_CUBIC)
resized_image /= 255.
image_data = np.expand_dims(resized_image, 0) # Add batch dimension.
return image_data
However, upon running the code, it will return:
resized_image /= 255.
TypeError: ufunc 'true_divide' output (typecode 'd') could not be coerced to provided output parameter (typecode 'B') according to the casting rule ''same_kind''
It seems like I need to change the uint8
type to float32
before normalizing but I'm not sure how to achieve it with OpenCV.
You can use resized_image.astype(np.float32)
to convert resized_image
data from unit8
to float32
and then proceed with normalizing and other stuffs:
frame = cv2.imread("yourfile.png")
frame = frame[200:500,400:1000] # crop ROI
im = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
model_image_size = (416, 416)
resized_image = cv2.resize(im, model_image_size, interpolation = cv2.INTER_CUBIC)
resized_image = resized_image.astype(np.float32)
resized_image /= 255.
image_data = np.expand_dims(resized_image, 0) # Add batch dimension.