I have a data of dimension (13961,48 ) initially, and after one hot encoding and also basic massaging of data the dimension observed around (13961,862). the data is imbalance with two categories of 'Retained' around 6% and 'not Retained' around 94%.
While running any algorithms such as logistic,knn,decision tree,random forest, the data results in very high accuracy even without any feature selection process carried out and the accuracy crosses more than 94% mostly except 'Naive bias classifier'.
This seems like odd and even by having any two features randomly also--> that gives accuracy more than 94% , which seems non reality in general.
Applying SMOTE also, provide result of more than 94% of accuracy even for baseline model of any algorithms said above such as logistic,knn,decision tree,random forest,
After removing the top 20 features also , this gives accuracy of good result more than 94% ( checked for understanding the genuineness )
g = data[Target_col_Y_name]
df = pd.concat([g.value_counts(),
g.value_counts(normalize=True).mul(100)],axis=1, keys=('counts','percentage'))
print('The % distribution between the retention and non-retention flag\n')
print (df)
# The code o/p to show the imbalance is
The % distribution between the retention and non-retention flag
counts percentage
Non Retained 13105 93.868634
Retained 856 6.131366
My data have 7 numerical variables such as month, amount, interest rate and all others ( around 855) as one-hot-encoding transformed categorical variables.
Any methodology , to handle this kind of data on baseline,feature selection or imbalance optimization techniques ? please guide by looking at the dimensionality and the imbalance count for each levels.
I would like to add something in addition to Elias answer.
Firstly, you have to understand that even if you's create "dumb classifier", which always predicts "not retained", you'd still be correct 94% of times. So accuracy is clearly weak metric in this case.
You should definitely learn about confusion matrix and metrics that come along with it (like AUC).
One of these metrics is F1 score, which is harmonic average of precision and recall. It is better that accuracy in imbalanced class setting, but... it doesn't have to be the best. F1 will favor these classifiers that have similar precision and recall. But this is not necessary something that is important for you.
For instance, if you'd build sfw content filter, you would be ok with labeling some SFW content as nsfw (negative class), which would increase false negative rate (and decrease recall), but you would like to be sure that you kept only safe ones (high precision).
In your case you can reason what is worse: retaining something bad or abandoning something good, and pick the metric in that way.
As far as strategy is concerned: there are plenty of ways to handle class imbalance: sampling techniques (try down-sampling, up-sampling besides SMOTE or ROSE) and check out whether your validation score (training metrics alone are almost useless) improved. Just remember to apply sampling/augmentations techniques after the train-validation split.
Moreover, some models have special hyperparametrs to focus more on rare class (for instance in xgboost there is scale_pos_weight parameter). From my experience, tunning this hyperparam is way more effective than SMOTE.
Good luck