Following this question, I'm trying to generate two time-dependent random functions omega1
and tau
using this example. The difference is that I need to have two different sample periods of 0.05
and 0.17
for omega1
and tau
respectively. I just duplicated the parts I thought would do the job:
model testData
extends Modelica.Icons.Example;
import Modelica.Math.Random.Generators;
import Modelica.Math.Random.Utilities;
parameter Real k = 50.0;
parameter Real J = 0.001;
Real theta1;
Real theta2;
Real omega2;
parameter Modelica.SIunits.Period samplePeriod1 = 0.05;
parameter Integer globalSeed1 = 30020;
parameter Integer localSeed1 = 614657;
output Real omega1;
parameter Modelica.SIunits.Period samplePeriod2 = 0.17;
parameter Integer globalSeed2 = 30020;
parameter Integer localSeed2 = 614657;
output Real tau;
protected
discrete Integer state1024[33](each start=0, each fixed = true);
algorithm
when initial() then
state1024 := Generators.Xorshift1024star.initialState(localSeed1, globalSeed1);
omega1 := 0;
elsewhen sample(0, samplePeriod1) then
(omega1, state1024) := Generators.Xorshift1024star.random(pre(state1024));
omega1 := (omega1 - 0.5) * 13;
end when;
when initial() then
state1024 := Generators.Xorshift1024star.initialState(localSeed2, globalSeed2);
omega1 := 0;
elsewhen sample(0, samplePeriod2) then
(tau, state1024) := Generators.Xorshift1024star.random(pre(state1024));
tau := (tau - 0.5) * 3;
end when;
public
parameter Integer id1 = Utilities.initializeImpureRandom(globalSeed1);
discrete Real rImpure1;
Integer iImpure1;
parameter Integer id2 = Utilities.initializeImpureRandom(globalSeed2);
discrete Real rImpure2;
Integer iImpure2;
algorithm
when initial() then
rImpure1 := 0;
iImpure1 := 0;
elsewhen sample(0, samplePeriod1) then
rImpure1 := Utilities.impureRandom(id=id1);
iImpure1 := Utilities.impureRandomInteger(
id=id1,
imin=-1234,
imax=2345);
end when;
when initial() then
rImpure2 := 0;
iImpure2 := 0;
elsewhen sample(0, samplePeriod2) then
rImpure2 := Utilities.impureRandom(id=id2);
iImpure2 := Utilities.impureRandomInteger(
id=id2,
imin=-1234,
imax=2345);
end when;
initial equation
theta1 = 0;
theta2 = 0;
der(theta2) = 0;
equation
der(theta1) = omega1;
der(theta2) = omega2;
J * der(omega2) = tau + k * (theta1 - theta2);
annotation(experiment(StartTime = 0, StopTime = 10, Tolerance = 1e-6, Interval = 0.02));
end testData;
however I get the error messages:
Symbolic Error
The given system is mixed-determined. [index > 3]
Please checkout the option "--maxMixedDeterminedIndex".
Translation Error
No system for the symbolic initialization was generated
I would appreciate if you could help me know what is the problem and how I can solve it.
P.S. considering that this code is apparantly compiling fine on Dymola, this could be a problem with OpenModelica. So I'm adding th JModelica tag in the case those guys can help me know if this compiles over there or not.
You have omega1 := 0;
in two when initial()
statements. Replace it by tau := 0;
in the second one and the example will work.
I recommend to cleanup your code a bit. I found various smaller issues and needless code lines.
localSeed2
and globalSeed2
are useless when they are initialized like the other seed variablesstate1024
is initialized at 3 different places (even though it works with OpenModelica): with start
values and fixed=true
and in two different when initial()
statementsomega2
and tau2
don't need to be outputs. The Tool determines by itself what it has to compute.Modelica.Blocks.Noise
and components from Modelica.Mechanics.Rotational
.Below is an updated version of your code with units, only one section for initialization and removed algorithm section (not necessary anymore due to the additional variables rand_omega
and rand_tau
).
model testData2
extends Modelica.Icons.Example;
import Modelica.Math.Random.Generators;
import Modelica.Math.Random.Utilities;
import SI = Modelica.SIunits;
parameter SI.RotationalSpringConstant k = 50.0;
parameter SI.Inertia J = 0.001;
parameter SI.Period samplePeriod_tau = 0.17;
parameter SI.Period samplePeriod_omega = 0.05;
parameter Integer globalSeed = 30020;
parameter Integer localSeed_tau = 614657;
parameter Integer localSeed_omega = 45613;
SI.Angle theta1, theta2;
SI.AngularVelocity omega1, omega2, rand_omega;
SI.Torque tau, rand_tau;
protected
discrete Integer state1024_tau[33];
discrete Integer state1024_omega[33];
initial equation
state1024_omega = Generators.Xorshift1024star.initialState(localSeed_omega, globalSeed);
state1024_tau = Generators.Xorshift1024star.initialState(localSeed_tau, globalSeed);
theta1 = 0;
theta2 = 0;
der(theta2) = 0;
equation
when sample(0, samplePeriod_omega) then
(rand_omega, state1024_omega) = Generators.Xorshift1024star.random(pre(state1024_omega));
end when;
when sample(0, samplePeriod_tau) then
(rand_tau, state1024_tau) = Generators.Xorshift1024star.random(pre(state1024_tau));
end when;
der(theta1) = omega1;
der(theta2) = omega2;
omega1 = (rand_omega - 0.5) * 13;
tau = (rand_tau - 0.5) * 3;
J * der(omega2) = 0 + k * (theta1 - theta2);
annotation(experiment(StartTime = 0, StopTime = 10, Tolerance = 1e-6, Interval = 0.02));
end testData2;