I'm trying to convert a Tensorflow-for-Poets model to a Tensorflow.js model, so I can use the in a front-end environment, like a website. I was trying to follow this tutorial: https://gist.github.com/woudsma/d01eeda8998c9ab972d05ec9e9843886
I've followed all the directions but when I try to launch localhost, I keep getting the titular error:
src/index.js
Attempted import error: 'loadFrozenModel' is not exported from
'@tensorflow/tfjs-converter'
I've trained a Tensorflow model using:
Tensorflow v. 1.7.0
TensorflowJS v. 1.2.9
Numpy v. 1.16.5
I also looked at these previously asked questions:
http://www.github.com/tensorflow/tfjs/issues/149
But this hasn't fixed my issue.
This is the example-project I've found in the tutorial. It contains the that I also used in my project. https://github.com/woudsma/retrain-mobilenet-for-the-web
I can't find anything about this specific error, does anyone know what's going wrong?
PS:This is also my first question posted to Stack Overflow, so let me know if something is missing from / wrong about this post.
EDIT: Added my index.js:
import { loadFrozenModel } from '@tensorflow/tfjs-converter'
import labels from './labels.json'
const ASSETS_URL = `${window.location.origin}/assets`
const MODEL_URL = `${ASSETS_URL}/mobilenet-v2/tensorflowjs_model.pb`
const WEIGHTS_URL = `${ASSETS_URL}/mobilenet-v2/weights_manifest.json`
const IMAGE_SIZE = 224 // Model input size
const loadModel = async () => {
const model = await loadFrozenModel(MODEL_URL, WEIGHTS_URL)
const input = tf.zeros([1, IMAGE_SIZE, IMAGE_SIZE, 3])
// Warm up GPU
// model.predict({ input }) // MobileNet V1
model.predict({ Placeholder: input }) // MobileNet V2
return model
}
const predict = async (img, model) => {
const t0 = performance.now()
const image = tf.fromPixels(img).toFloat()
const resized = tf.image.resizeBilinear(image, [IMAGE_SIZE, IMAGE_SIZE])
const offset = tf.scalar(255 / 2)
const normalized = resized.sub(offset).div(offset)
const input = normalized.expandDims(0)
// const output = await tf.tidy(() => model.predict({ input })).data()
// MobileNet V2
const predictions = labels
.map((label, index) => ({ label, accuracy: output[index] }))
.sort((a, b) => b.accuracy - a.accuracy)
const time = `${(performance.now() - t0).toFixed(1)} ms`
return { predictions, time }
}
const start = async () => {
const input = document.getElementById('input')
const output = document.getElementById('output')
const model = await loadModel()
const predictions = await predict(input, model)
output.append(JSON.stringify(predictions, null, 2))
}
start()
EDIT: I also added the HTML-file, just to be sure.
<!DOCTYPE html>
<html lang="en">
<head>
<title>Image classifier</title>
</head>
<body>
<img id="input" src="assets/images/some-flower.jpg" />
<pre id="output"></pre>
</body>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"></script>
</html>
import { loadFrozenModel } from '@tensorflow/tfjs-converter'
loadFrozenModel
is not exported from @tensorflow/tfjs-converter
. It is rather in the namespace of @tensorflow/tfjs
. Since you've already imported the CDN scripts, you only need to load the model using tf.loadFrozenModel
const model = await loadFrozenModel(MODEL_URL, WEIGHTS_URL)
Also tf.fromPixels
has been changed to tf.browser.fromPixels