I am experimenting with the definition of CoNat
taken from this paper by Jesper Cockx and Andreas Abel:
open import Data.Bool
open import Relation.Binary.PropositionalEquality
record CoNat : Set where
coinductive
field iszero : Bool
pred : .(iszero ≡ false) -> CoNat
open CoNat public
I define zero
and plus
:
zero : CoNat
iszero zero = true
pred zero ()
plus : CoNat -> CoNat -> CoNat
iszero (plus m n) = iszero m ∧ iszero n
pred (plus m n) _ with iszero m | inspect iszero m | iszero n | inspect iszero n
... | false | [ p ] | _ | _ = plus (pred m p) n
... | true | _ | false | [ p ] = plus m (pred n p)
pred (plus _ _) () | true | _ | true | _
And I define bisimilarity:
record _≈_ (m n : CoNat) : Set where
coinductive
field
iszero-≈ : iszero m ≡ iszero n
pred-≈ : ∀ p q -> pred m p ≈ pred n q
open _≈_ public
But I am stuck with the proof that plus zero n
is bisimilar to n
. My guess is that in the proof I should have (at least) a with-clause for iszero n
:
plus-zero-l : ∀ n -> plus zero n ≈ n
iszero-≈ (plus-zero-l _) = refl
pred-≈ (plus-zero-l n) p q with iszero n
... | _ = ?
But Agda complains with to the following error message:
iszero n != w of type Bool
when checking that the type
(n : CoNat) (w : Bool) (p q : w ≡ false) →
(pred (plus zero n) _ | true | [ refl ] | w | [ refl ]) ≈ pred n _
of the generated with function is well-formed
How can I make this proof?
I wasn't immediately able to prove the lemma with your definition of plus
, but here's an alternative definition that makes the proof go through:
open import Data.Bool
open import Relation.Binary.PropositionalEquality
record CoNat : Set where
coinductive
field iszero : Bool
pred : .(iszero ≡ false) -> CoNat
open CoNat public
zero : CoNat
zero .iszero = true
zero .pred ()
record _≈_ (m n : CoNat) : Set where
coinductive
field
iszero-≈ : iszero m ≡ iszero n
pred-≈ : ∀ p q → pred m p ≈ pred n q
open _≈_ public
plus′ : (n m : CoNat) → CoNat
plus′ n m .iszero = n .iszero ∧ m .iszero
plus′ n m .pred eq with n .iszero | m .iszero | n .pred | m .pred
plus′ n m .pred eq | false | _ | pn | pm = plus′ (pn refl) m
plus′ n m .pred eq | true | false | pn | pm = plus′ n (pm refl)
plus′ n m .pred () | true | true | pn | pm
plus′-zero-l : ∀ n → plus′ zero n ≈ n
plus′-zero-l n .iszero-≈ = refl
plus′-zero-l n .pred-≈ p q with n .iszero | n .pred
plus′-zero-l n .pred-≈ () _ | true | pn
plus′-zero-l n .pred-≈ p q | false | pn = plus′-zero-l (pn _)
FWIW, given that plus requires such an effort, I can't see this representation of conats being particularly nice to work with. You might want to consider these alternatives:
Thunk
datatype.CoNat′ = ℕ ⊎ ⊤
, which is not exactly a conat but may serve similar purposes.