I am using the ggpairs from ggplot2.
I need to get an histogram in the diagonal for the ggpairs, but want to superimpose the normal density curve using the mean and sd of the data.
I read the help (https://www.rdocumentation.org/packages/GGally/versions/1.4.0/topics/ggpairs) but can't find an option to do it. I guess I must built my own function (myfunct) and then
ggpairs(sample.dat, diag=list(continuous = myfunct))
Has anyone have tried this?
I have tried the following:
head(data)
x1 x2 x3 x4 x5 x6 F1 F2
1 -0.749 -1.57 0.408 0.961 0.777 0.171 -0.143 0.345
myhist = function(data){
ggplot(data, aes(x)) +
geom_histogram(aes(y = ..density..),colour = "black") +
stat_function(fun = dnorm, args = list(mean = mean(x), sd = sd(x)))
}
ggpairs(sample.data, diag=list(continuous = myhist))
The result is:
Error in (function (data) : unused argument (mapping = list(~x1))
This question provides an example of the code to add a normal curve to a histogram in ggplot2
. You can use this to write your own function to pass to the diag
argument of ggpairs
. To calculate the mean
and sd
of the data, you can grab the relevant data using, for example, eval_data_col(data, mapping$x)
. Example below (perhaps a little more complicated than needed but it allows you to pass parameters to change colours etc using the wrap
functionality.
library(GGally)
diag_fun <- function(data, mapping, hist=list(), ...){
X = eval_data_col(data, mapping$x)
mn = mean(X)
s = sd(X)
ggplot(data, mapping) +
do.call(function(...) geom_histogram(aes(y =..density..), ...), hist) +
stat_function(fun = dnorm, args = list(mean = mn, sd = s), ...)
}
ggpairs(iris[1:100, 1:4],
diag=list(continuous=wrap(diag_fun, hist=list(fill="red", colour="blue"),
colour="green", lwd=2)))