rcluster-analysisk-meansself-organizing-maps

Kohonen SOM plot is displaying observations within cluster plot. how to remove?


I am running :

kmeansDat.t <- som_model$codes[[1]] %>% as.matrix


som_cluster <- cutree(hclust(dist(kmeansDat.t)), 5) %>% as.matrix
# plot these results:
plot(som_model, type="mapping", bgcol = pretty_palette[som_cluster], main = "Clusters") 
add.cluster.boundaries(som_model, som_cluster)

My output is cluttered by dark circles each appears to be representing the number of observations in each node. How can I remove them ?

Any idea why this is happening?

enter image description here


Solution

  • Setting pchs="" inside plot.kohonen solves the problem:

    library(kohonen)
    library(magrittr)
    # A dataset for testing the code
    data(yeast)
    X <- matrix(rnorm(100000), nrow=1000)
    som_model <- som(X, somgrid(30, 30, "hexagonal"))
    kmeansDat.t <- som_model$codes[[1]] %>% as.matrix
    pretty_palette <- rainbow(5)   
    som_cluster <- cutree(hclust(dist(kmeansDat.t)), 5) %>% as.matrix
    # Plot Kohonen's map
    plot(som_model, type="mapping", bgcol = pretty_palette[som_cluster], 
         main = "Clusters", pchs="") 
    add.cluster.boundaries(som_model, som_cluster)
    

    enter image description here