I have a use case, where a large remote file needs to be downloaded in parts, by using multiple threads. Each thread must run simultaneously (in parallel), grabbing a specific part of the file. The expectation is to combine the parts into a single (original) file, once all parts were successfully downloaded.
Perhaps using the requests library could do the job, but then I am not sure how I would multithread this into a solution that combines the chunks together.
url = 'https://url.com/file.iso'
headers = {"Range": "bytes=0-1000000"} # first megabyte
r = get(url, headers=headers)
I was also thinking of using curl where Python would orchestrate the downloads, but I am not sure that's the correct way to go. It just seems to be too complex and swaying away from the vanilla Python solution. Something like this:
curl --range 200000000-399999999 -o file.iso.part2
Can someone explain how you'd go about something like this? Or post a code example of something that works in Python 3? I usually find the Python-related answers quite easily, but the solution to this problem seems to be eluding me.
Here is a version using Python 3 with Asyncio, it's just an example, it can be improved, but you should be able to get everything you need.
get_size
: Send an HEAD request to get the size of the filedownload_range
: Download a single chunkdownload
: Download all the chunks and merge themimport asyncio
import concurrent.futures
import functools
import requests
import os
# WARNING:
# Here I'm pointing to a publicly available sample video.
# If you are planning on running this code, make sure the
# video is still available as it might change location or get deleted.
# If necessary, replace it with a URL you know is working.
URL = 'https://download.samplelib.com/mp4/sample-30s.mp4'
OUTPUT = 'video.mp4'
async def get_size(url):
response = requests.head(url)
size = int(response.headers['Content-Length'])
return size
def download_range(url, start, end, output):
headers = {'Range': f'bytes={start}-{end}'}
response = requests.get(url, headers=headers)
with open(output, 'wb') as f:
for part in response.iter_content(1024):
f.write(part)
async def download(run, loop, url, output, chunk_size=1000000):
file_size = await get_size(url)
chunks = range(0, file_size, chunk_size)
tasks = [
run(
download_range,
url,
start,
start + chunk_size - 1,
f'{output}.part{i}',
)
for i, start in enumerate(chunks)
]
await asyncio.wait(tasks)
with open(output, 'wb') as o:
for i in range(len(chunks)):
chunk_path = f'{output}.part{i}'
with open(chunk_path, 'rb') as s:
o.write(s.read())
os.remove(chunk_path)
if __name__ == '__main__':
executor = concurrent.futures.ThreadPoolExecutor(max_workers=3)
loop = asyncio.new_event_loop()
run = functools.partial(loop.run_in_executor, executor)
asyncio.set_event_loop(loop)
try:
loop.run_until_complete(
download(run, loop, URL, OUTPUT)
)
finally:
loop.close()