I am using a genetic algorithm implemented with the DEAP library for Python. In order to avoid premature convergence, and to force exploration of the feature space, I would like the mutation probability to be high during the first generations. But to prevent drifting away from extremum once they are identified, I would like the mutation probability to be lower in the last generations. How do I get the mutation probability to decrease over the generations? Is there any built-in function in DEAP to get this done?
When I register a mutation function, for instance
toolbox.register('mutate', tools.mutPolynomialBounded, eta=.6, low=[0,0], up=[1,1], indpb=0.1)
the indpb
parameter is a float. How can I make it a function of something else?
Sounds like a job for Callbackproxy which evaluates function arguments each time they are called. I added a simple example where I modified the official DEAP n-queen example
such that the mutation rate is set to 2/N_GENS
(arbitrary choice just to make the point).
Notice that Callbackproxy receives a lambda, so you have to pass the mutation rate argument as a function (either using a fully blown function or just a lambda). The result anyway is that each time the indpb
parameter is evaluated this lambda will be called, and if the lambda contains reference to a global variable generation counter, you got what you want.
# This file is part of DEAP.
#
# DEAP is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of
# the License, or (at your option) any later version.
#
# DEAP is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with DEAP. If not, see <http://www.gnu.org/licenses/>.
import random
from objproxies import CallbackProxy
import numpy
from deap import algorithms
from deap import base
from deap import creator
from deap import tools
# Problem parameter
NB_QUEENS = 20
N_EVALS = 0
N_GENS = 1
def evalNQueens(individual):
global N_EVALS, N_GENS
"""Evaluation function for the n-queens problem.
The problem is to determine a configuration of n queens
on a nxn chessboard such that no queen can be taken by
one another. In this version, each queens is assigned
to one column, and only one queen can be on each line.
The evaluation function therefore only counts the number
of conflicts along the diagonals.
"""
size = len(individual)
# Count the number of conflicts with other queens.
# The conflicts can only be diagonal, count on each diagonal line
left_diagonal = [0] * (2 * size - 1)
right_diagonal = [0] * (2 * size - 1)
# Sum the number of queens on each diagonal:
for i in range(size):
left_diagonal[i + individual[i]] += 1
right_diagonal[size - 1 - i + individual[i]] += 1
# Count the number of conflicts on each diagonal
sum_ = 0
for i in range(2 * size - 1):
if left_diagonal[i] > 1:
sum_ += left_diagonal[i] - 1
if right_diagonal[i] > 1:
sum_ += right_diagonal[i] - 1
N_EVALS += 1
if N_EVALS % 300 == 0:
N_GENS += 1
return sum_,
creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMin)
# Since there is only one queen per line,
# individual are represented by a permutation
toolbox = base.Toolbox()
toolbox.register("permutation", random.sample, range(NB_QUEENS), NB_QUEENS)
# Structure initializers
# An individual is a list that represents the position of each queen.
# Only the line is stored, the column is the index of the number in the list.
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.permutation)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("evaluate", evalNQueens)
toolbox.register("mate", tools.cxPartialyMatched)
toolbox.register("mutate", tools.mutShuffleIndexes, indpb=CallbackProxy(lambda: 2.0 / N_GENS))
toolbox.register("select", tools.selTournament, tournsize=3)
def main(seed=0):
random.seed(seed)
pop = toolbox.population(n=300)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("Avg", numpy.mean)
stats.register("Std", numpy.std)
stats.register("Min", numpy.min)
stats.register("Max", numpy.max)
algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=1, ngen=100, stats=stats,
halloffame=hof, verbose=True)
return pop, stats, hof
if __name__ == "__main__":
main()