using the ALS example from the sparklyr documentation:
library(sparklyr)
sc <- spark_connect(master = "local")
movies <- data.frame(
user = c(1, 2, 0, 1, 2, 0),
item = c(1, 1, 1, 2, 2, 0),
rating = c(3, 1, 2, 4, 5, 4)
)
movies_tbl <- sdf_copy_to(sc, movies)
model <- ml_als(movies_tbl, rating ~ user + item)
How can you then extract the resulting latent user and item factors from the model?
Got there in the end with tidy(model)
.
Here's an updated example with 3 users and 4 items:
library(sparklyr)
sc <- spark_connect(master = "local")
# 3 users, 4 films:
movies <- data.frame(
user = c(1, 1, 1, 1, 2, 2, 3, 3, 3, 3),
item = c(1, 2, 3, 4, 1, 2, 1, 2, 3, 4),
rating = c(3, 1, 2, 5, 1, 5, 1, 1, 5, 4)
)
movies_tbl <- sdf_copy_to(sc, movies, overwrite = TRUE)
movies_tbl <- sdf_copy_to(sc, movies)
model <- ml_als(movies_tbl, rating ~ user + item)
You can extract the users and items latent factors with:
model_tidy <- tidy(model) %>% collect
# A tibble: 4 x 3
id user_factors item_factors
<int> <list> <list>
1 1 <list [10]> <list [10]>
2 3 <list [10]> <list [10]>
3 2 <list [10]> <list [10]>
4 4 <lgl [1]> <list [10]>
so the list element is <lgl[1}>
for ids that don't exist in either the user or item list.