I've used:
float *devptr;
//...
cudaMalloc(&devptr, sizeofarray);
cudaMemcpy(devptr, hostptr, sizeofarray, cudaMemcpyHostToDevice);
in CUDA C to allocate and populate an array. Now I'm trying to run a cuda kernel, e.g.:
__global__ void kernelname(float *ptr)
{
//...
}
in that array but with an offset value. In C/C++ it would be someting like this:
kernelname<<<dimGrid, dimBlock>>>(devptr+offset);
However, this doesn't seem to work.
Is there a way to do this without sending the offset value to the kernel in a separate argument and use that offset in the kernel code? Any ideas on how to do this?
Pointer arithmetic does work just fine in CUDA. You can add an offset to a CUDA pointer in host code and it will work correctly (remembering the offset isn't a byte offset, it is a plain word or element offset).
EDIT: A simple working example:
#include <cstdio>
int main(void)
{
const int na = 5, nb = 4;
float a[na] = { 1.2, 3.4, 5.6, 7.8, 9.0 };
float *_a, b[nb];
size_t sza = size_t(na) * sizeof(float);
size_t szb = size_t(nb) * sizeof(float);
cudaFree(0);
cudaMalloc((void **)&_a, sza );
cudaMemcpy( _a, a, sza, cudaMemcpyHostToDevice);
cudaMemcpy( b, _a+1, szb, cudaMemcpyDeviceToHost);
for(int i=0; i<nb; i++)
printf("%d %f\n", i, b[i]);
cudaThreadExit();
}
Here, you can see a word/element offset has been applied to the device pointer in the second cudaMemcpy
call to start the copy from the second word, not the first.