I am using lmer models to look at the effect of environmental predictor variables on a landscape variable. To do so, I'm using the dredge function to create a model candidate set of all possible combinations of predictor variables.
m3 <- lmer(div~scale(log(travel.time))+scale(spinsandplain)+scale(ThreeYearRain)+scale(claylake)+scale(ThreeYearRain)*scale(log(travel.time))+(1|circleID),na.action=na.fail,
data=data, REML=FALSE)
s <-dredge(m3, extra = list("R^2"))
s
summary(get.models(s, 1)[[1]])
I want to now pull out the confidence intervals of each variable from each of the top models. I can't seem to find any code, other than model averaging. Do you have the code? Is this not possible?
Thanks in advance, Leanne
get.models()
returns a list
of model objects of the same class as your global.model
, so use e.g. confint
or any relevant function on each item through lapply
, sapply
or a for
loop.
For example: lapply(get.models(s, 1:10), confint)
Reproducible example:
library(glmmTMB)
library(MuMIn)
# from example(glmmTMB)
m2 <- glmmTMB(count ~ spp + mined + (1|site), family=nbinom2, data=Salamanders))
models <- get.models(dredge(m2), TRUE)
# list of CI for each model's parameters:
lapply(models, confint)