I am a little puzzled with the PGI Fortran compiler.
When I try to compiler the following simple module stored in the file named test.f90
, with pgfortran 19.10 I get errors that I do not understand. While compiling with gfortran or ifort run well.
The file test.f90
:
MODULE CT
IMPLICIT NONE
integer, parameter :: si = SELECTED_INT_KIND(4)
integer(kind=si), public, parameter :: strlen = 256
type, public :: CMT
integer (kind=si) :: nbTot
character(len=strlen), dimension(:), allocatable :: condi
CONTAINS
procedure :: find_line_condi
endtype CMT
CONTAINS
PURE function find_line_condi( table, cara ) result(k)
IMPLICIT NONE
class(CMT), intent(in) :: table
character(len=*), intent(in) :: cara
integer (kind=si) :: k
integer (kind=si) :: j
k=-1
do j=1,table%nbTot
if (trim(table%condi(j)) .eq. cara) then
k=j
RETURN
else if ( j == table%nbTot ) then
k=-1
RETURN
endif
enddo
end function find_line_condi
END MODULE CT
The compilation with pgfortran -c test.f90
returns me the following error message:
/opt/pgi/linux86-64-llvm/19.10/share/llvm/bin/llc: error: /opt/pgi/linux86-64-llvm/19.10/share/llvm/bin/llc: /tmp/pgfortranr2qeZBujkwvA.ll:23:77: error: invalid forward reference to function 'ct_find_line_condi_' with wrong type: expected 'i32 (i64*, i64*, i64*, i64)*' but was 'i16 (i64*, i64*, i64*, i64)*'
@ct$cmt$td$vft = global [1 x i8*] [i8* bitcast(i16 (i64*, i64*, i64*, i64)* @ct_find_line_condi_ to i8*)]
Does anyone has some ideas where this problem comes from?
This is a bug in the compiler. Consider the module
MODULE CT
IMPLICIT NONE
type CMT
CONTAINS
procedure, nopass :: find_line_condi
endtype CMT
CONTAINS
function find_line_condi()
integer(SELECTED_INT_KIND(4)) find_line_condi
find_line_condi=0
end function find_line_condi
END MODULE CT
which is quite a bit simpler than that of that question. Compiled with pgfortran 19.10 there is a similar gibberish output. It's left as an exercise to the reader/PGI support desk whether this simpler code is valid Fortran which should be accepted but I would consider the poor diagnostic to be something PGI would prefer to avoid.
However, this appears to be a weakness in the LLVM frontend of PGI: consider compiling with pgfortran -c -Mnollvm ...
. There are also ways to rewrite the code to attempt to work around this bug, such as changing the kind of the function result.
More widely, PGI introduced in the 2019 releases the LLVM code generator. This seems to be going through a number of teething difficulties. If you have code unexpectedly failing with PGI 2019 (which may have worked with 2018), then compiling with -Mnollvm
to use the non-LLVM generator is worth a try.