I have a data frame that takes this form (but is several millions of rows long):
import pandas as pd
dict = {'id':["A", "A", "A", "B", "B", "B", "C", "C", "C", "D", "D", "D"],
'year': ["2000", "2001", "2002", "2000", "2001", "2003", "1999", "2000", "2001", "2000", "2000", "2001"],
'vacation':["France", "Morocco", "Morocco", "Germany", "Germany", "Germany", "Japan", "Australia", "Japan", "Canada", "Mexico", "China"],
'new':[1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1]}
df = pd.DataFrame(dict)
A 2000 France
A 2001 Morocco
A 2002 Morocco
B 2000 Germany
B 2001 Germany
B 2003 Germany
C 1999 Japan
C 2000 Australia
C 2001 Japan
D 2000 Canada
D 2000 Mexico
D 2001 China
For each person in each year, the holiday destination(s) is/are given; there can be multiple holiday destinations in a given year. I would like to flag the rows when a participant goes to holiday to a destination to which they had not gone the year before (i.e., the destination is new). In the case above, the output would be:
id year vacation new
A 2000 France 1
A 2001 Morocco 1
A 2002 Morocco 0
B 2001 Germany 1
B 2002 Germany 0
B 2003 Germany 0
C 1999 Japan 1
C 1999 Australia 1
C 2000 Japan 1
D 2000 Canada 1
D 2000 Mexico 1
D 2001 China 1
For A, B, C, and D, the first holiday destination in our data frame is flagged as new. When A goes to Morocco two years in a row, the 2nd occurrence is not flagged, because A went there the year before. When B goes to Germany 3 times in a row, the 2nd and 3rd occurrences are not flagged. When person C goes to Japan twice, all of the occurrences are flagged, because they did not go to Japan two years in a row. D goes to 3 different destinations (albeit to 2 destinations in 2000) and all of them are flagged.
I have been trying to solve it myself, but have not been able to break away from iterations, which are too computationally intensive for such a massive dataset.
I'd appreciate any input; thanks.
What we are doing is grouping by id
& vacation
and ensuring that year is not equal to the year above, or we can selecting the first instance of that combination.
df["new_2"] = (
df.groupby(["id", "vacation"])["id", "year"]
.apply(lambda x: x.ne(x.shift()))
.all(axis=1)
.add(0)
)
print(df)
id year vacation new_2
0 A 2000 France 1
1 A 2001 USA 1
2 A 2002 France 0
3 B 2001 Germany 1
4 B 2002 Germany 0
5 B 2003 Germany 0
6 C 1999 Japan 1
7 C 2000 Australia 1
8 C 2001 France 1