Context: I'm trying to write a macro that is statically aware of an non-fixed number of types. I'm trying to pass these types as a single type parameter using an HList
. It would be called as m[ConcreteType1 :: ConcreteType2 :: ... :: HNil]()
. The macro then builds a match statement which requires some implicits to be found at compile time, a bit like how a json serialiser might demand implicit encoders. I've got a working implementation of the macro when used on a fixed number of type parameters, as follows:
def m[T1, T2](): Int = macro mImpl[T1, T2]
def mImpl[T1: c.WeakTypeTag, T2: c.WeakTypeTag](c: Context)(): c.Expr[Int] = {
import c.universe._
val t = Seq(
weakTypeOf[T1],
weakTypeOf[T2]
).map(c => cq"a: $c => externalGenericCallRequiringImplicitsAndReturningInt(a)")
val cases = q"input match { case ..$t }"
c.Expr[Int](cases)
}
Question: If I have a WeakTypeTag[T]
for some T <: HList
, is there any way to turn that into a Seq[Type]
?
def hlistToSeq[T <: HList](hlistType: WeakTypeTag[T]): Seq[Type] = ???
My instinct is to write a recursive match which turns each T <: HList
into either H :: T
or HNil
, but I don't think that kind of matching exists in scala.
I'd like to hear of any other way to get a list of arbitrary size of types into a macro, bearing in mind that I would need a Seq[Type]
, not Expr[Seq[Type]]
, as I need to map over them in macro code.
A way of writing a similar 'macro' in Dotty would be interesting too - I'm hoping it'll be simpler there, but haven't fully investigated yet.
Edit (clarification): The reason I'm using a macro is that I want a user of the library I'm writing to provide a collection of types (perhaps in the form of an HList
), which the library can iterate over and expect implicits relating to. I say library, but it will be compiled together with the uses, in order for the macros to run; in any case it should be reusable with different collections of types. It's a bit confusing, but I think I've worked this bit out - I just need to be able to build macros that can operate on lists of types.
Currently you seem not to need macros. It seems type classes or shapeless.Poly
can be enough.
def externalGenericCallRequiringImplicitsAndReturningInt[C](a: C)(implicit
mtc: MyTypeclass[C]): Int = mtc.anInt
trait MyTypeclass[C] {
def anInt: Int
}
object MyTypeclass {
implicit val mtc1: MyTypeclass[ConcreteType1] = new MyTypeclass[ConcreteType1] {
override val anInt: Int = 1
}
implicit val mtc2: MyTypeclass[ConcreteType2] = new MyTypeclass[ConcreteType2] {
override val anInt: Int = 2
}
//...
}
val a1: ConcreteType1 = null
val a2: ConcreteType2 = null
externalGenericCallRequiringImplicitsAndReturningInt(a1) //1
externalGenericCallRequiringImplicitsAndReturningInt(a2) //2