One of my favorite ways to test the power of a language I'm learning is to try and implement various fixed-point combinators. Since I'm learning Clojure (though I'm not new to lisps), I did the same for it.
First, a little "testable" code, factorial:
(def !'
"un-fixed factorial function"
(fn [f]
(fn [n]
(if (zero? n)
1
(* n (f (dec n)))))))
(defn !
"factorial"
[n]
(if (zero? n)
1
(apply * (map inc (range n)))))
For any combinator c
I implement, I want to verify that ((c !') n)
is equal to (! n)
.
We start with the traditional Y:
(defn Y
"pure lazy Y combinator => stack overflow"
[f]
(let [A (fn [x] (f (x x)))]
(A A)))
But of course Clojure is not nearly so lazy as that, so we pivot to Z:
(defn Z
"strict fixed-point combinator"
[f]
(let [A (fn [x] (f (fn [v] ((x x) v))))]
(A A)))
And indeed, it holds that (= ((Z !') n) (! n))
.
Now comes my issue: I cannot get either of U or the Turing combinator (theta-v) to work correctly. I suspect with U it's a language limit, while with theta-v I'm more inclined to believe it's a misread of Wikipedia's notation:
(defn U
"the U combinator => broken???"
[f]
(f f))
(defn theta-v
"Turing fixed-point combinator by-value"
[f]
(let [A (fn [x] (fn [y] (y (fn [z] ((x x) y) z))))]
(A A)))
A sample REPL experience:
((U !') 5)
;=> Execution error (ClassCastException) at fix/!'$fn (fix.clj:55).
;=> fix$_BANG__SINGLEQUOTE_$fn__180 cannot be cast to java.lang.Number
((theta-v !') 5)
;=> Execution error (ClassCastException) at fix/theta-v$A$fn (fix.clj:36).
;=> java.lang.Long cannot be cast to clojure.lang.IFn
Can anyone explain
Your definition of theta-v is wrong for two reasons. The first is pretty obvious: you accept f
as a parameter and then ignore it. A more faithful translation would be to use def
style, as you have for your other functions:
(def theta-v
"Turing fixed-point combinator by-value"
(let [A (fn [x] (fn [y] (y (fn [z] ((x x) y) z))))]
(A A)))
The second reason is a bit sneakier: you translated λz.xxyz
to (fn [z] ((x x) y) z)
, remembering that lisps need more parentheses to denote function calls that are implicit in lambda-calculus notation. However, you missed one set: just as x x y z
would have meant "evaluate x
twice, then y
once, then finally return z
", what you wrote means "evaluate ((x x) y)
, then throw away that result and return z
". Adding the extra set of parentheses yields a working theta-v
:
(def theta-v
"Turing fixed-point combinator by-value"
(let [A (fn [x] (fn [y] (y (fn [z] (((x x) y) z)))))]
(A A)))
and we can demonstrate that it works by calculating some factorials:
user> (map (theta-v !') (range 10))
(1 1 2 6 24 120 720 5040 40320 362880)
As for U: to use the U combinator, functions being combined must change how they self-call, meaning you would need to rewrite !'
as well:
(def U [f] (f f))
(def ! (U (fn [f]
(fn [n]
(if (zero? n)
1
(* n ((f f) (dec n))))))))
Note that I have changed (f (dec n))
to ((f f) (dec n))
.