I am able to use Bokeh to plot glyphs from a geopandas dataframe over a Google Map using the gmap() function.
from bokeh.io import output_notebook, show, output_file
from bokeh.plotting import figure
from bokeh.models import GeoJSONDataSource, LinearColorMapper, ColorBar
from bokeh.palettes import brewer#Input GeoJSON source that contains features for plotting.
import json
from bokeh.models import ColumnDataSource, GMapOptions
from bokeh.plotting import gmap
def make_dataset(df, candidate):
#df_copy = df.copy()
df_copy = get_df(candidate)
merged_json = json.loads(df_copy.to_json())#Convert to String like object.
json_data = json.dumps(merged_json)
geosource = GeoJSONDataSource(geojson = json_data)
return geosource
def make_plot(candidate):
src = make_dataset(df,candidate)
#Input GeoJSON source that contains features for plotting.
p = figure(title = 'Results of candidate X', plot_height = 600 , plot_width = 950, toolbar_location = None)
map_options = GMapOptions(lat=42, lng=44, map_type="roadmap", zoom=7)
p = gmap("my-key", map_options, title="Austin")
p.xgrid.grid_line_color = None
p.ygrid.grid_line_color = None#Add patch renderer to figure.
p.patches('xs','ys', source = src,fill_color = {'field' :'results', 'transform' : color_mapper},
line_color = 'black', line_width = 0.25, fill_alpha = 1)#Specify figure layout.
p.add_layout(color_bar, 'below')#Display figure inline in Jupyter Notebook.
output_notebook()#Display figure.
return p
It gives me:
However when I plot using Carto as a provider as explained here there is an error in the axes:
tile_provider = get_provider(Vendors.CARTODBPOSITRON)
# range bounds supplied in web mercator coordinates
p = figure(x_range=(-2000000, 6000000), y_range=(-1000000, 7000000))#, x_axis_type="mercator", y_axis_type="mercator")
p.add_tile(tile_provider)
p.xgrid.grid_line_color = None
p.ygrid.grid_line_color = None#Add patch renderer to figure.
p.patches('xs','ys', source = src,fill_color = {'field' :'results', 'transform' : color_mapper},
line_color = 'black', line_width = 0.25, fill_alpha = 1)#Specify figure layout.
p.add_layout(color_bar, 'below')#Display figure inline in Jupyter Notebook.
output_notebook()#Display figure.
return p
So it is located wrong in the map, where one can see the red circle:
Looks like the map is in EPSG:3857 ("web mercator") while my source is probably in EPSG:4326. How can I do to plot it correctly?
Here is the first few lines of my data:
id parent_id common_id common_name has_children shape_type_id \
64 70140 69935 3 63-3 False 4
65 70141 69935 2 63-2 False 4
66 70142 69935 5 63-5 False 4
67 70143 69935 6 63-6 False 4
68 70144 69935 8 63-8 False 4
shape_type_name value color title_location results \
64 Precinct No Data None Precinct: 63-3 65.16
65 Precinct No Data None Precinct: 63-2 57.11
66 Precinct No Data None Precinct: 63-5 54.33
67 Precinct No Data None Precinct: 63-6 59.15
68 Precinct No Data None Precinct: 63-8 61.86
turnout \
64 {'pct': 46.38, 'count': 686.0, 'eligible': 1479}
65 {'pct': 49.62, 'count': 394.0, 'eligible': 794}
66 {'pct': 58.26, 'count': 624.0, 'eligible': 1071}
67 {'pct': 57.54, 'count': 492.0, 'eligible': 855}
68 {'pct': 50.75, 'count': 506.0, 'eligible': 997}
geometry
64 POLYGON ((42.18180 42.18530, 42.18135 42.18593...
65 POLYGON ((42.20938 42.20621, 42.21156 42.20706...
66 POLYGON ((42.08429 42.20468, 42.08489 42.20464...
67 POLYGON ((42.16270 42.16510, 42.16661 42.16577...
68 POLYGON ((42.16270 42.16510, 42.16315 42.16640...
You have to reproject your data from EPSG:4326 to EPSG:3857
Here's a solution with some GeoJSON data:
# requirements
# !pip install pandas numpy bokeh geopandas
import pandas as pd
import numpy as np
def lon_to_web_mercator(lon):
k = 6378137
return lon * (k * np.pi / 180.0)
def lat_to_web_mercator(lat):
k = 6378137
return np.log(np.tan((90 + lat) * np.pi / 360.0)) * k
def wgs84_to_web_mercator(df, lon="lon", lat="lat"):
"""Converts decimal longitude/latitude to Web Mercator format"""
k = 6378137
df["x"] = df[lon] * (k * np.pi / 180.0)
df["y"] = np.log(np.tan((90 + df[lat]) * np.pi / 360.0)) * k
return df
BerlinWGS84 = [13.08835, 13.76116, 52.33826, 52.67551]
Berlin = x_range, y_range = ((lon_to_web_mercator(BerlinWGS84[0]), lon_to_web_mercator(BerlinWGS84[1])),
(lat_to_web_mercator(BerlinWGS84[2]), lat_to_web_mercator(BerlinWGS84[3])))
# plot it
from bokeh.plotting import figure, show, output_notebook
from bokeh.tile_providers import get_provider, Vendors
output_notebook()
tile_provider = get_provider(Vendors.CARTODBPOSITRON)
# range bounds sgupplied in web mercator coordinates
p = figure(x_range=x_range, y_range=y_range,
x_axis_type="mercator", y_axis_type="mercator")
p.add_tile(tile_provider)
show(p)
# geopandas
import geopandas as gpd
import requests
def remoteGeoJSONToGDF(url, display=False):
# source: https://medium.com/@maptastik/remote-geojson-to-geodataframe-19c3c1282a64
"""Import remote GeoJSON to a GeoDataFrame
Keyword arguments:
url -- URL to GeoJSON resource on web
display -- Displays geometries upon loading (default: False)
"""
r = requests.get(url)
data = r.json()
gdf = gpd.GeoDataFrame.from_features(data['features'])
if display:
gdf.plot()
return gdf
url = 'https://gist.githubusercontent.com/sabman/96730f5949576e7793a3f79eb390f90c/raw/7ffcf34239175cafcc9a63382e6beacd0cab9fa9/BerlinFeatures.geojson'
gdf = remoteGeoJSONToGDF(url)
gdf.plot()
# make sure initial projection is defined
gdf.crs = {'init': 'epsg:4326'}
gdf_webmerc = gdf.copy()
# reproject
gdf_webmerc = gdf['geometry'].to_crs(epsg=3857)
gdf_webmerc.plot()
from bokeh.models import GeoJSONDataSource
geo_source = GeoJSONDataSource(geojson=gdf_webmerc.to_json())
# let's plot and look
p.circle(x='x', y='y', size=15, alpha=0.7, source=geo_source)
show(p)