I need a way to add a column level to a dataframe.
| A | B | C | A | B | C |
date
2018 0 1 2 1 3 2
And this is what I want to do:
| ticker 1 | ticker 2 |
| A | B | C | A | B | C |
date
2018 0 1 2 1 3 2
Use GroupBy.cumcount
for counts duplicates with converted columns to series by Index.to_series
, add prefix and last assign back for MultiIndex in columns
:
df = pd.DataFrame({
'A':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')
})
df.columns= list('ABCABC')
print (df)
A B C A B C
0 a 4 7 1 5 a
1 b 5 8 3 3 a
2 c 4 9 5 6 a
3 d 5 4 7 9 b
4 e 5 2 1 2 b
5 f 4 3 0 4 b
s = df.columns.to_series()
df.columns = ['ticker ' + s.groupby(s).cumcount().add(1).astype(str), s]
print (df)
ticker 1 ticker 2
A B C A B C
0 a 4 7 1 5 a
1 b 5 8 3 3 a
2 c 4 9 5 6 a
3 d 5 4 7 9 b
4 e 5 2 1 2 b
5 f 4 3 0 4 b