I've built a Keras model with two inputs that I'd like to predict on with SNPE on my phone. I've already converted it successfully, it's just the C++ code that I'm having trouble with right now. I'm able to predict on a model with one input with any shape 1D array, but I now have a model that takes two 1D arrays of size 1.
So in Keras, predicting looks like this: model.predict([np.array([.4]), np.array([.6])])
And the SNPE code I have to predict:
void init_model(){
zdl::DlSystem::Runtime_t runt=checkRuntime();
initializeSNPE(runt);
}
float run_model(float a, float b){
std::vector<float> inputVec;
std::vector<float> inputVec2;
inputVec.push_back(a);
inputVec2.push_back(b);
std::unique_ptr<zdl::DlSystem::ITensor> inputTensor = loadInputTensor(snpe, inputVec);
std::unique_ptr<zdl::DlSystem::ITensor> inputTensor2 = loadInputTensor(snpe, inputVec2); // what do I do with this?
zdl::DlSystem::ITensor* oTensor = executeNetwork(snpe, inputTensor);
return returnOutput(oTensor);
}
The functions I'm using are modified from SNPE's website. It works well with my prior uses of predicting on a single array:
zdl::DlSystem::Runtime_t checkRuntime()
{
static zdl::DlSystem::Version_t Version = zdl::SNPE::SNPEFactory::getLibraryVersion();
static zdl::DlSystem::Runtime_t Runtime;
std::cout << "SNPE Version: " << Version.asString().c_str() << std::endl; //Print Version number
std::cout << "\ntest";
if (zdl::SNPE::SNPEFactory::isRuntimeAvailable(zdl::DlSystem::Runtime_t::GPU)) {
Runtime = zdl::DlSystem::Runtime_t::GPU;
} else {
Runtime = zdl::DlSystem::Runtime_t::CPU;
}
return Runtime;
}
void initializeSNPE(zdl::DlSystem::Runtime_t runtime) {
std::unique_ptr<zdl::DlContainer::IDlContainer> container;
container = zdl::DlContainer::IDlContainer::open("/path/to/model.dlc");
//printf("loaded model\n");
int counter = 0;
zdl::SNPE::SNPEBuilder snpeBuilder(container.get());
snpe = snpeBuilder.setOutputLayers({})
.setRuntimeProcessor(runtime)
.setUseUserSuppliedBuffers(false)
.setPerformanceProfile(zdl::DlSystem::PerformanceProfile_t::HIGH_PERFORMANCE)
.build();
}
std::unique_ptr<zdl::DlSystem::ITensor> loadInputTensor(std::unique_ptr<zdl::SNPE::SNPE> &snpe, std::vector<float> inputVec) {
std::unique_ptr<zdl::DlSystem::ITensor> input;
const auto &strList_opt = snpe->getInputTensorNames();
if (!strList_opt) throw std::runtime_error("Error obtaining Input tensor names");
const auto &strList = *strList_opt;
const auto &inputDims_opt = snpe->getInputDimensions(strList.at(0));
const auto &inputShape = *inputDims_opt;
input = zdl::SNPE::SNPEFactory::getTensorFactory().createTensor(inputShape);
std::copy(inputVec.begin(), inputVec.end(), input->begin());
return input;
}
float returnOutput(const zdl::DlSystem::ITensor* tensor) {
float op = *tensor->cbegin();
return op;
}
zdl::DlSystem::ITensor* executeNetwork(std::unique_ptr<zdl::SNPE::SNPE>& snpe,
std::unique_ptr<zdl::DlSystem::ITensor>& input) {
static zdl::DlSystem::TensorMap outputTensorMap;
snpe->execute(input.get(), outputTensorMap);
zdl::DlSystem::StringList tensorNames = outputTensorMap.getTensorNames();
const char* name = tensorNames.at(0); // only should the first
auto tensorPtr = outputTensorMap.getTensor(name);
return tensorPtr;
}
But I have no clue how to combine the two input tensors I've gotten to use with the executeNetwork
function. Any help would be appreciated.
You can use zdl::DlSystem::TensorMap and set it to execute function.
zdl::DlSystem::TensorMap inputTensorMap;
zdl::DlSystem::TensorMap outputTensorMap;
zdl::DlSystem::ITensor *inputTensor1;
zdl::DlSystem::ITensor *inputTensor2;
inputTensorMap.add("input_1", inputTensor1);
inputTensorMap.add("input_2", inputTensor2);
model->execute(inputTensorMap, outputTensorMap);
Note that you have to iterate through inputTensorMap after and delete ITensor's by yourself with delete.