So far, I was using tf.contrib.predictor.from_saved_model
to load a SavedModel
(tf.estimator
model class). However, this function has unfortunately been removed in TensorFlow v2. So far, in TensorFlow v1, my coding was the following:
predict_fn = predictor.from_saved_model(model_dir + '/' + model, signature_def_key='predict')
prediction_feed_dict = dict()
for key in predict_fn._feed_tensors.keys():
#forec_data is a DataFrame holding the data to be fed in
for index in forec_data.index:
prediction_feed_dict[key] = [ [ forec_data.loc[index][key] ] ]
prediction_complete = predict_fn(prediction_feed_dict)
Using tf.saved_model.load
, I unsuccessfully tried the following in TensorFlow v2:
model = tf.saved_model.load(model_dir + '/' + latest_model)
model_fn = model.signatures['predict']
prediction_feed_dict = dict()
for key in model_fn._feed_tensors.keys(): #<-- no replacement for _feed_tensors.keys() found
#forec_data is a DataFrame holding the data to be fed in
for index in forec_data.index:
prediction_feed_dict[key] = [ [ forec_data.loc[index][key] ] ]
prediction_complete = model_fn(prediction_feed_dict) #<-- no idea if this is anyhow close to correct
So my questions are (both in the context of TensorFlow v2):
_feed_tensors.keys()
?tf.estimator
model loaded with tf.saved_model.load
Thanks a lot, any help is appreciated.
Note: This question is not a duplicate of the one posted here as the answers provided there all rely on features of TensorFlow v1 that have been removed in TensorFlow v2.
EDIT: The question postet here seems to ask basically the same thing, but until now (2020-01-22) is also unanswered.
Hope you have Saved the Estimator Model using the code similar to that mentioned below:
input_column = tf.feature_column.numeric_column("x")
estimator = tf.estimator.LinearClassifier(feature_columns=[input_column])
def input_fn():
return tf.data.Dataset.from_tensor_slices(
({"x": [1., 2., 3., 4.]}, [1, 1, 0, 0])).repeat(200).shuffle(64).batch(16)
estimator.train(input_fn)
serving_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
tf.feature_column.make_parse_example_spec([input_column]))
export_path = estimator.export_saved_model(
"/tmp/from_estimator/", serving_input_fn)
You can Load the Model using the code mentioned below:
imported = tf.saved_model.load(export_path)
To Predict
using your Model by passing the Input Features, you can use the below code:
def predict(x):
example = tf.train.Example()
example.features.feature["x"].float_list.value.extend([x])
return imported.signatures["predict"](examples=tf.constant([example.SerializeToString()]))
print(predict(1.5))
print(predict(3.5))
For more details, please refer this link in which Saved Models using TF Estimator are explained.