I'm trying to build a CNN but I get this error:
---> 52 x = x.view(x.size(0), 5 * 5 * 16)
RuntimeError: shape '[16, 400]' is invalid for input of size 9600
It's not clear for me what the inputs of the 'x.view' line should be. Also, I don't really understand how many times I should have this 'x.view' function in my code. Is it only once, after the 3 convolutional layers and 2 linear layers? Or is it 5 times, one after every layer?
Here's my CNN code:
import torch.nn.functional as F
# Convolutional neural network
class ConvNet(nn.Module):
def __init__(self, num_classes=10):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=16,
kernel_size=3)
self.conv2 = nn.Conv2d(
in_channels=16,
out_channels=24,
kernel_size=4)
self.conv3 = nn.Conv2d(
in_channels=24,
out_channels=32,
kernel_size=4)
self.dropout = nn.Dropout2d(p=0.3)
self.pool = nn.MaxPool2d(2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(512, 10)
self.final = nn.Softmax(dim=1)
def forward(self, x):
print('shape 0 ' + str(x.shape))
x = F.max_pool2d(F.relu(self.conv1(x)), 2)
x = self.dropout(x)
print('shape 1 ' + str(x.shape))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = self.dropout(x)
print('shape 2 ' + str(x.shape))
# x = F.max_pool2d(F.relu(self.conv3(x)), 2)
# x = self.dropout(x)
x = F.interpolate(x, size=(5, 5))
x = x.view(x.size(0), 5 * 5 * 16)
x = self.fc1(x)
return x
net = ConvNet()
Can someone help me understand the problem?
The output of x.shape
is:
shape 0 torch.Size([16, 3, 256, 256])
shape 1 torch.Size([16, 16, 127, 127])
shape 2 torch.Size([16, 24, 62, 62])
Thanks.
This means that instead the product of the channel and spatial dimensions is not 5*5*16
. To flatten the tensor, replace x = x.view(x.size(0), 5 * 5 * 16)
with:
x = x.view(x.size(0), -1)