I would like to draw samples from a probability distribution with CDF 1 - e^(-x^2)
.
Is there a method in python/scipy/etc. to enable you to sample from a probability distribution given only its CDF?
To create a custom random variable class given a CDF you could subclass scipy.rv_continuous
and override rv_continuous._cdf
. This will then automatically generate the corresponding PDF and other statistical information about your distribution, e.g.
import matplotlib.pyplot as plt
import numpy as np
from scipy import stats
class MyRandomVariableClass(stats.rv_continuous):
def __init__(self, xtol=1e-14, seed=None):
super().__init__(a=0, xtol=xtol, seed=seed)
def _cdf(self, x):
return 1-np.exp(-x**2)
if __name__ == "__main__":
my_rv = MyRandomVariableClass()
# sample distribution
samples = my_rv.rvs(size = 1000)
# plot histogram of samples
fig, ax1 = plt.subplots()
ax1.hist(list(samples), bins=50)
# plot PDF and CDF of distribution
pts = np.linspace(0, 5)
ax2 = ax1.twinx()
ax2.set_ylim(0,1.1)
ax2.plot(pts, my_rv.pdf(pts), color='red')
ax2.plot(pts, my_rv.cdf(pts), color='orange')
fig.tight_layout()
plt.show()