I have a problem with choosing right parameters for HoughCircles function. I try to detect circles from video. This circles are made by me, and has almost the same dimension. Problem is that camera is in move.
When I change maxRadius it still detect bigger circles somehow (see the right picture). I also tried to change param1, param2 but still no success.
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blurred = cv2.medianBlur(gray, 25)#cv2.bilateralFilter(gray,10,50,50)
minDist = 100
param1 = 500
param2 = 200#smaller value-> more false circles
minRadius = 5
maxRadius = 10
circles = cv2.HoughCircles(blurred, cv2.HOUGH_GRADIENT, 1, minDist, param1, param2, minRadius, maxRadius)
if circles is not None:
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
cv2.circle(blurred,(i[0], i[1]), i[2], (0, 255, 0), 2)
Maybe Im using wrong function?
The main problem in your code is 5th argument to HoughCircles
function.
According to documentation the argument list is:
cv2.HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) → circles
That means the 5th argument applies circles
(it gives an option getting the output by reference, instead of using the returned value).
Because you are not passing circles
argument, you must pass named arguments for all arguments after the 4th argument (like param1=param1
, param2=param2
....).
Parameter tuning issues:
param1
.
param1
is the higher threshold passed to the Canny.30
. param2
The documentation not so clear, but setting the value around 50
works. maxRadius
value - radius 10
is much smaller than the radius of your circles. Here is the code:
import numpy as np
import cv2
img = cv2.imread('circles.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blurred = cv2.medianBlur(gray, 25) #cv2.bilateralFilter(gray,10,50,50)
minDist = 100
param1 = 30 #500
param2 = 50 #200 #smaller value-> more false circles
minRadius = 5
maxRadius = 100 #10
# docstring of HoughCircles: HoughCircles(image, method, dp, minDist[, circles[, param1[, param2[, minRadius[, maxRadius]]]]]) -> circles
circles = cv2.HoughCircles(blurred, cv2.HOUGH_GRADIENT, 1, minDist, param1=param1, param2=param2, minRadius=minRadius, maxRadius=maxRadius)
if circles is not None:
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
cv2.circle(img, (i[0], i[1]), i[2], (0, 255, 0), 2)
# Show result for testing:
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
Result: