apache-sparkspark-streaming-kafkaspark-avro

Provider org.apache.spark.sql.avro.AvroFileFormat could not be instantiated


Unable to send avro format message to Kafka topic from spark streaming application. Very less information is available online about avro spark streaming example code. "to_avro" method doesn't require avro schema then how it will encode to avro format?

Can someone please help to resolve below exception?

Dependency:

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-avro_2.12</artifactId>
    <version>2.4.4</version>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-core_2.11</artifactId>
    <version>2.4.0</version>
</dependency>
<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
    <version>2.4.0</version>
</dependency>

Below is the code to push to kafka topic

dataset.toDF.select(to_avro(struct(dataset.toDF.columns.map(column):_*))).alias("value").distinct.write.format("avro")
      .option(KafkaConstants.BOOTSTRAP_SERVER, priBootStrapServers)
      .option(ApplicationConstants.TOPIC_KEY, publishPriTopic)
      .save()

Getting below exception.

Caused by: java.util.ServiceConfigurationError: org.apache.spark.sql.sources.DataSourceRegister: Provider org.apache.spark.sql.avro.AvroFileFormat could not be instantiated
    at java.util.ServiceLoader.fail(ServiceLoader.java:232)
    at java.util.ServiceLoader.access$100(ServiceLoader.java:185)
    at java.util.ServiceLoader$LazyIterator.nextService(ServiceLoader.java:384)
    at java.util.ServiceLoader$LazyIterator.next(ServiceLoader.java:404)
    at java.util.ServiceLoader$1.next(ServiceLoader.java:480)
    at scala.collection.convert.Wrappers$JIteratorWrapper.next(Wrappers.scala:43)
    at scala.collection.Iterator$class.foreach(Iterator.scala:893)
    at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
    at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
    at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
    at scala.collection.TraversableLike$class.filterImpl(TraversableLike.scala:247)
    at scala.collection.TraversableLike$class.filter(TraversableLike.scala:259)
    at scala.collection.AbstractTraversable.filter(Traversable.scala:104)
    at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:614)
    at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:241)
    at com.walmart.replenishment.edf.dao.EdfOwBuzzerDao$.saveToCassandra(EdfOwBuzzerDao.scala:47)
    at com.walmart.replenishment.edf.process.BuzzerService$.updateScrItemPriStatus(BuzzerService.scala:119)
    at com.walmart.replenishment.edf.process.BuzzerStreamProcessor$$anonfun$processConsumerInputStream$1.apply(BuzzerStreamProcessor.scala:36)
    at com.walmart.replenishment.edf.process.BuzzerStreamProcessor$$anonfun$processConsumerInputStream$1.apply(BuzzerStreamProcessor.scala:28)
    at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:628)
    at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$1$$anonfun$apply$mcV$sp$3.apply(DStream.scala:628)
    at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51)
    at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
    at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
    at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:416)
    at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50)
    at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
    at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
    at scala.util.Try$.apply(Try.scala:192)
    at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
    at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:257)
    at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257)
    at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:257)
    at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
    at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:256)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.NoSuchMethodError: org.apache.spark.sql.execution.datasources.FileFormat.$init$(Lorg/apache/spark/sql/execution/datasources/FileFormat;)V
    at org.apache.spark.sql.avro.AvroFileFormat.(AvroFileFormat.scala:44)
    at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
    at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
    at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
    at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
    at java.lang.Class.newInstance(Class.java:442)
    at java.util.ServiceLoader$LazyIterator.nextService(ServiceLoader.java:380)
    ```



Solution

  • Look at this this ticket. The problem seems to exist in 2.4.4 and 2.4.5. I am still using version 2.4.4. Switching to package org.apache.spark:spark-avro_2.11:2.4.4 fixed the issue for me.