I have problem, because I want to generate permutations of a list (in prolog), which contains n zeros and 24 - n ones without repetitions. I've tried:findall(L, permutation(L,P), Bag)
and then sort
it to remove repetitions, but it causes stack overflow. Anyone has an efficient way to do this?
Select n random numbers between 0 and 23 in ascending order. These integers give you the indexes of the zeroes and all the configurations are different. The key is generating these list of indexes.
%
% We need N monotonically increasing integer numbers (to be used
% as indexes) from [From,To].
%
need_indexes(N,From,To,Sol) :-
N>0,
!,
Delta is To-From+1,
N=<Delta, % Still have a chance to generate them all
N_less is N-1,
From_plus is From+1,
(
% Case 1: "From" is selected into the collection of index values
(need_indexes(N_less,From_plus,To,SubSol),Sol=[From|SubSol])
;
% Case 2: "From" is not selected, which is only possible if N<Delta
(N<Delta -> need_indexes(N,From_plus,To,Sol))
).
need_indexes(0,_,_,[]).
Now we can get list of indexes picked from the available possible indexes.
For example:
Give me 5 indexes from 0 to 23 (inclusive):
?- need_indexes(5,0,23,Collected).
Collected = [0, 1, 2, 3, 4] ;
Collected = [0, 1, 2, 3, 5] ;
Collected = [0, 1, 2, 3, 6] ;
Collected = [0, 1, 2, 3, 7] ;
...
Give them all:
?- findall(Collected,need_indexes(5,0,23,Collected),L),length(L,LL).
L = [[0, 1, 2, 3, 4], [0, 1, 2, 3, 5], [0, 1, 2, 3, 6], [0, 1, 2, 3, 7], [0, 1, 2, 3|...], [0, 1, 2|...], [0, 1|...], [0|...], [...|...]|...],
LL = 42504.
We are expecting: (24! / ((24-5)! * 5!)) solutions.
Indeed:
?- L is 20*21*22*23*24 / (1*2*3*4*5).
L = 42504.
Now the only problem is transforming every solution like [0, 1, 2, 3, 4]
into a string of 0 and 1. This is left as an exercise!