pythonsympyequationnonlinear-equation

How to get all roots (complex and real) from a complex non-linear system using python?


I am trying to solve a complex non-linear system. The problem is that there are many roots, and some of them are complex roots. From these roots I need to select only the one that the real part is between [0,1] and does not have complex part (ex: 0.23+0i). ex:

root1: 1.02 + 2i

root2: 0.23 + 1.23i

root3: 0.23 + 0i

...

Here is my system: tau1 and tau2 are the variables that I need to find. The equations are t1 and t2 that are dependent on tau1 and tau2

x0=0 # initial position
xf=30 # final position
x1= 10;
x2 = 20;
tf=20 # final time

tau_wp=[]
def f(tau_wp):
    tau1, tau2 = tau_wp
    a=(1-tau1)**5*(-10*tau2**3 +15*tau2**4 -6*tau2**5) + (1-tau1)**4*(20*tau2**3 -35*tau2**4 + 15*tau2**5) + (1-tau1)**3*(-10*tau2**3 +20*tau2**4 -10*tau2**5) + (tau2-tau1)**5
    b=(1-tau2)**5*(-10*tau1**3 +15*tau1**4 -6*tau1**5) + (1-tau2)**4*(20*tau1**3 -35*tau1**4 + 15*tau1**5) + (1-tau2)**3*(-10*tau1**3 +20*tau1**4 -10*tau1**5)

    den=a*b -36*tau2**5*(1-tau2)**5*tau1**5*(1-tau1)**5

    p2=(-6*tau1**5*(1-tau1)**5*(xf-x0)*(10*tau2**3-15*tau2**4+6*tau2**5) \
                                         -(xf-x0)*(10*tau1**3-15*tau1**4+6*tau1**5)*a \
                                         + (x1-x0)*a + (x2-x0)*(6*tau1**5*(1-tau1**5)))

    p1=(a*b -36*tau2**5*(1-tau2)**5*tau1**5*(1-tau1)**5)*(-(xf-x0)*(10*tau1**3-15*tau1**4+6*tau1**5) +(x1-x0)) \
                        + b*( (xf-x0)*(10*tau2**3 -15*tau2**4 +6*tau2**5)*(6*tau1**5*(1-tau1)**5) \
                        + (xf-x0)*(10*tau1**3 -15*tau1**4 +6*tau1**5)*a \
                        - (x1-x0)*a - (x2-x0)*(6*tau1**5*(1-tau1)**5))


    u0=(xf-x0)*(30*tau1**2-60*tau1**3 +30*tau1**4)+p1*tf**5/120*(60*tau1**9-270*tau1**8+480*tau1**7-420*tau1**6+180*tau1**5-30*tau1**4) \
           + p2*tf**5/120 * ((1-tau2)**5*(-30*tau1**2 +60*tau1**3 -30*tau1**4) + (1-tau2)**4*(60*tau1**2 - 140*tau1**3 +75*tau1**4) + \
            (1-tau2)**3*(-30*tau1**2 +80*tau1**3 - 50*tau1**4))

    u1=(xf-x0)*(30*tau2**2 - 60*tau2**3 + 30*tau2**4)+p1*tf**5/120*((1-tau1)**5*(-30*tau2**2 +60*tau1**3 -30*tau1**4) + \
        (1-tau1)**4*(60*tau2**2 - 140*tau2**3 +75*tau2**4) + (1-tau1)**3*(-30*tau2**2 +80*tau2**3 - 50*tau2**4) \
        + 5*tau2**4 -20*tau2**3*tau1 +30*tau2**2*tau1**2 -20*tau2*tau1**3 +5*tau1**4) \
        + p2*tf**5/120*(60*tau2**9-270*tau2**8+480*tau2**7-420*tau2**6+180*tau2**5-30*tau2**4)

    ## system of nonlinear equations dependent on tau1 and tau2
    t1=u0*p1 ### equation 1
    t2=u1*p2 ### equation 2

    return [t1,t2]

I tried to use fsolve, but with fsolve I couldn't get the complex part.

Is there any way to do this in python?

Thank you so much for your help!


Solution

  • It's a little confusing because you say that you "couldn't get the complex part" but in the question you say that you are looking for solutions where the imaginary part is 0 and the magnitude of the real part is between 0 and 1. If this is correct, then nsolve can solve this pair of equations if you give a good enough initial guess:

    >>> from sympy import symbols
    >>> v = symbols('tau1:3')
    >>> nsolve(f(v), (tau1, tau2), (.5,.4))
    Matrix([
    [0.495387590772031],
    [ 0.49736468918969]])
    

    You can get a rough idea of where to look for roots by looking at the values of t1 and t2 for different values of tau1 and tau2. Since they should both be zero I look at the log of the sum of squares -- the smaller the better:

    >>> Matrix(10,10,lambda i,j:
    log(sqrt(sum([k.subs(tau1,i/10).subs(tau2,j/10)**2 for k in (t1,t2)]))).round())
    Matrix([
    [zoo, zoo, zoo, zoo, zoo, zoo, zoo, zoo, zoo, zoo],
    [-17,  -5,  -6,  -3,  -2,  -2,  -3,  -4,  -5,  -7],
    [ -7,  -2,  -1,   0,   0,   0,   0,   0,  -1,  -2],
    [ -1,   0,   3,   4,   3,   3,   4,   4,   3,   1],
    [  3,   4,   6,   7,   6,   4,   7,   7,   6,   4],
    [  5,   6,   8,   9,   9,   5,   9,   9,   8,   6],
    [  8,   8,  10,  11,  11,   6,  11,  11,  10,   8],
    [  9,   9,  11,  12,  12,   7,  12,  12,  11,   9],
    [  9,  10,  12,  13,  13,   7,  13,  13,  12,  10],
    [  8,  11,  13,  13,  13,   7,  13,  13,  12,  10]])
    

    (The zoo values correspond to the trivial solution when tau1 is zero.