pythonrbayesianstanpystan

How to use brms (R package) to generate the Stan code I need to reproduce the models estimation in pystan?


I have developed the pipeline to estimate a model using the R package brms and now I need to convert it to python. I understand that the closest I can get to brms in python is pystan where I have to write my model using the Stan syntax. I would like to know if is there a brms function that generates the Stan code that can be used as the model_code argument for the pystan.StanModel function in python. I have tried using the code generated by the make_stancode function, but it has not worked.

This is the code generated by make_stancode:

life_span_code = """
// generated with brms 2.10.0
functions {

  /* compute monotonic effects
   * Args:
   *   scale: a simplex parameter
   *   i: index to sum over the simplex
   * Returns:
   *   a scalar between 0 and 1
   */
  real mo(vector scale, int i) {
    if (i == 0) {
      return 0;
    } else {
      return rows(scale) * sum(scale[1:i]);
    }
  }
}
data {
  int<lower=1> N;  // number of observations
  vector[N] Y;  // response variable
  int<lower=1> Ksp;  // number of special effects terms
  int<lower=1> Imo;  // number of monotonic variables
  int<lower=2> Jmo[Imo];  // length of simplexes
  // monotonic variables
  int Xmo_1[N];
  // prior concentration of monotonic simplexes
  vector[Jmo[1]] con_simo_1;
  int prior_only;  // should the likelihood be ignored?
}
transformed data {
}
parameters {
  // temporary intercept for centered predictors
  real Intercept;
  // special effects coefficients
  vector[Ksp] bsp;
  // simplexes of monotonic effects
  simplex[Jmo[1]] simo_1;
  real<lower=0> sigma;  // residual SD
}
transformed parameters {
}
model {
  // initialize linear predictor term
  vector[N] mu = Intercept + rep_vector(0, N);
  for (n in 1:N) {
    // add more terms to the linear predictor
    mu[n] += (bsp[1]) * mo(simo_1, Xmo_1[n]);
  }
  // priors including all constants
  target += student_t_lpdf(Intercept | 3, 65, 12);
  target += dirichlet_lpdf(simo_1 | con_simo_1);
  target += student_t_lpdf(sigma | 3, 0, 12)
    - 1 * student_t_lccdf(0 | 3, 0, 12);
  // likelihood including all constants
  if (!prior_only) {
    target += normal_lpdf(Y | mu, sigma);
  }
}
generated quantities {
  // actual population-level intercept
  real b_Intercept = Intercept;
}
"""

This is the code I am using in python:

## Libraries
import pandas as pd
import pystan
import numpy as np
import random as rd

## Build data for life span example with ordenated factors

income_options =  ["below_20", "20_to_40", "40_to_100", "greater_100"]
income_mean = [30, 60, 70, 75]
income_factor = [0, 1, 2, 3]

dict_data = {'income_options' : income_options,
             'income_mean' : income_mean,
             'income_factor' :  income_factor}

map_df = pd.DataFrame(dict_data)

income_rep = rd.sample(income_factor*25, 100)

rand_inc = np.random.normal(loc = 0, scale = 1, size = 100).tolist()


data_df = pd.DataFrame({'income_factor': income_rep,
                        'rand_inc' : rand_inc})

data_df = pd.merge(data_df, map_df, on = 'income_factor')

data_df['ls'] = data_df['income_mean'] + data_df['rand_inc']

N = data_df.shape[0]
Y = data_df['ls'].tolist()
K = 1
X = [1]*N
Ksp = 1
Imo = 1
Xmo_1 = data_df['income_factor'].tolist()
Jmo = len(data_df['income_factor'].unique().tolist())-1
con_simo_1 = [1]*Jmo
prior_only = 0


life_span_data = {'N' : N,
                  'Y' : Y,
                  'K' : K,
                  'X' : X,
                  'Ksp' : Ksp,
                  'Imo' : Imo,
                  'Xmo_1' : Xmo_1,
                  'Jmo' : Jmo,
                  'con_simo_1' : con_simo_1,
                  'prior_only' : prior_only}

life_span_sm = pystan.StanModel(model_code = life_span_code)
life_span_fit = life_span_sm.sampling(data= life_span_data, iter=1000, chains=2)

And this is the error I am receiving:

"RuntimeError: Exception: mismatch in number dimensions declared and found in context; processing stage=data initialization; variable name=Jmo; dims declared=(1); dims found=() (in 'unknown file name' at line 24)"

Thanks for all the help


Solution

  • Turns out the problem was not in the model code produced by brms but in the way I have defined the arguments. In particular, Jmo has to be a list instead of an int.

    N = data_df.shape[0]
    Y = data_df['ls'].tolist()
    K = 1
    X = [1]*N
    Ksp = 1
    Imo = 1
    Xmo_1 = data_df['income_factor'].tolist()
    
    ## The following two lines have changed
    Jmo = [len(data_df['income_factor'].unique().tolist())-1]
    con_simo_1 = [1, 1, 1]
    ## End of changes
    
    prior_only = 0
    

    The rest of the code is the same. I would still appreciate some clarification on why do some arguments can be declared as ints and others only as lists.

    Thanks again