c++gccg++openacc

Compiling c++ OpenACC parallel CPU code using GCC (G++)


When trying to compile OpenACC code with GCC-9.3.0 (g++) configured with --enable-languages=c,c++,lto --disable-multilib the following code does not use multiple cores, whereas if the same code is compiled with the pgc++ compiler it does use multiple cores.

g++ compilation: g++ -lgomp -Ofast -o jsolve -fopenacc jsolvec.cpp

pgc++ compilation: pgc++ -o jsolvec.exe jsolvec.cpp -fast -Minfo=opt -ta=multicore

Code from OpenACC Tutorial1/solver https://github.com/OpenACCuserGroup/openacc-users-group.git:

// Jacobi iterative method for solving a system of linear equations
// This is guaranteed to converge if the matrix is diagonally dominant,
// so we artificially force the matrix to be diagonally dominant.
//  See https://en.wikipedia.org/wiki/Jacobi_method
//
//  We solve for vector x in Ax = b
//    Rewrite the matrix A as a
//       lower triangular (L),
//       upper triangular (U),
//    and diagonal matrix (D).
//
//  Ax = (L + D + U)x = b
//
//  rearrange to get: Dx = b - (L+U)x  -->   x = (b-(L+U)x)/D
//
//  we can do this iteratively: x_new = (b-(L+U)x_old)/D

// build with TYPE=double (default) or TYPE=float
// build with TOLERANCE=0.001 (default) or TOLERANCE= any other value
// three arguments:
//   vector size
//   maximum iteration count
//   frequency of printing the residual (every n-th iteration)

#include <cmath>
#include <omp.h>
#include <cstdlib>
#include <iostream>
#include <iomanip>

using std::cout;

#ifndef TYPE
#define TYPE double
#endif

#define TOLERANCE 0.001

void
init_simple_diag_dom(int nsize, TYPE* A)
{
  int i, j;

  // In a diagonally-dominant matrix, the diagonal element
  // is greater than the sum of the other elements in the row.
  // Scale the matrix so the sum of the row elements is close to one.
  for (i = 0; i < nsize; ++i) {
    TYPE sum;
    sum = (TYPE)0;
    for (j = 0; j < nsize; ++j) {
      TYPE x;
      x = (rand() % 23) / (TYPE)1000;
      A[i*nsize + j] = x;
      sum += x;
    }
    // Fill diagonal element with the sum
    A[i*nsize + i] += sum;

    // scale the row so the final matrix is almost an identity matrix
    for (j = 0; j < nsize; j++)
      A[i*nsize + j] /= sum;
  }
} // init_simple_diag_dom

int
main(int argc, char **argv)
{
  int nsize; // A[nsize][nsize]
  int i, j, iters, max_iters, riter;
  double start_time, elapsed_time;
  TYPE residual, err, chksum;
  TYPE *A, *b, *x1, *x2, *xnew, *xold, *xtmp;

  // set matrix dimensions and allocate memory for matrices
  nsize = 0;
  if (argc > 1)
    nsize = atoi(argv[1]);
  if (nsize <= 0)
    nsize = 1000;

  max_iters = 0;
  if (argc > 2)
    max_iters = atoi(argv[2]);
  if (max_iters <= 0)
    max_iters = 5000;

  riter = 0;
  if (argc > 3)
    riter = atoi(argv[3]);
  if (riter <= 0)
    riter = 200;

  cout << "nsize = " << nsize << ", max_iters = " << max_iters << "\n";

  A = new TYPE[nsize*nsize];

  b = new TYPE[nsize];
  x1 = new TYPE[nsize];
  x2 = new TYPE[nsize];

  // generate a diagonally dominant matrix
  init_simple_diag_dom(nsize, A);

  // zero the x vectors, random values to the b vector
  for (i = 0; i < nsize; i++) {
    x1[i] = (TYPE)0.0;
    x2[i] = (TYPE)0.0;
    b[i] = (TYPE)(rand() % 51) / 100.0;
  }

  start_time = omp_get_wtime();

  //
  // jacobi iterative solver
  //

  residual = TOLERANCE + 1.0;
  iters = 0;
  xnew = x1;    // swap these pointers in each iteration
  xold = x2;
  while ((residual > TOLERANCE) && (iters < max_iters)) {
    ++iters;
    // swap input and output vectors
    xtmp = xnew;
    xnew = xold;
    xold = xtmp;

    #pragma acc parallel loop
    for (i = 0; i < nsize; ++i) {
      TYPE rsum = (TYPE)0;
      #pragma acc loop reduction(+:rsum)
      for (j = 0; j < nsize; ++j) {
        if (i != j) rsum += A[i*nsize + j] * xold[j];
      }
      xnew[i] = (b[i] - rsum) / A[i*nsize + i];
    }
    //
    // test convergence, sqrt(sum((xnew-xold)**2))
    //
    residual = 0.0;
    #pragma acc parallel loop reduction(+:residual)
    for (i = 0; i < nsize; i++) {
      TYPE dif;
      dif = xnew[i] - xold[i];
      residual += dif * dif;
    }
    residual = sqrt((double)residual);
    if (iters % riter == 0 ) cout << "Iteration " << iters << ", residual is " << residual << "\n";
  }
  elapsed_time = omp_get_wtime() - start_time;
  cout << "\nConverged after " << iters << " iterations and " << elapsed_time << " seconds, residual is " << residual << "\n";

  //
  // test answer by multiplying my computed value of x by
  // the input A matrix and comparing the result with the
  // input b vector.
  //
  err = (TYPE)0.0;
  chksum = (TYPE)0.0;

  for (i = 0; i < nsize; i++) {
    TYPE tmp;
    xold[i] = (TYPE)0.0;
    for (j = 0; j < nsize; j++)
      xold[i] += A[i*nsize + j] * xnew[j];
    tmp = xold[i] - b[i];
    chksum += xnew[i];
    err += tmp * tmp;
  }
  err = sqrt((double)err);
  cout << "Solution error is " << err << "\n";
  if (err > TOLERANCE)
    cout << "****** Final Solution Out of Tolerance ******\n" << err << " > " << TOLERANCE << "\n";

  delete A;
  delete b;
  delete x1;
  delete x2;
  return 0;
}

Solution

  • It's not yet supported in GCC to use OpenACC to schedule parallel loops onto multicore CPUs. Using OpenMP works for that, of course, and you can have code with mixed OpenACC (for GPU offloading, as already present in your code) and OpenMP directives (for CPU parallelization, not yet present in your code), so that the respective mechanism will be used depending on whether compiling with -fopenacc vs. -fopenmp.

    Like PGI are doing, it certainly can be supported in GCC; we'll certainly be able to implement that, but it has not yet been scheduled, has not yet been funded for GCC.