I'm new to data science and want to build a neural network model in R. I've read about one-hot encoding categorical data prior to training. I've tried to implement this, however, I'm receiving the following error when trying to train the model:
Error in model.frame.default(formula = nndf$class ~ ., data = train) :
invalid type (list) for variable 'nndf$class'
I've read the nnet documentation which explains that the formula should be passed as:
class ~ x1 + x2
But I'm still unsure of how to pass the data correctly.
Here is the code:
nndf$al <- one_hot(as.data.table(nndf$al))
nndf$su <- one_hot(as.data.table(nndf$su))
nndf$rbc <- one_hot(as.data.table(nndf$rbc))
nndf$pc <- one_hot(as.data.table(nndf$pc))
nndf$pcc <- one_hot(as.data.table(nndf$pcc))
nndf$ba <- one_hot(as.data.table(nndf$ba))
nndf$htn <- one_hot(as.data.table(nndf$htn))
nndf$dm <- one_hot(as.data.table(nndf$dm))
nndf$cad <- one_hot(as.data.table(nndf$cad))
nndf$appet <- one_hot(as.data.table(nndf$appet))
nndf$pe <- one_hot(as.data.table(nndf$pe))
nndf$ane <- one_hot(as.data.table(nndf$ane))
nndf$class <- one_hot(as.data.table(nndf$class))
class(nndf$class)
# view the dataframe to ensure one hot encoding is correct
summary(nndf)
# randomly sample rows for tt split
train_idx <- sample(1:nrow(nndf), 0.8 * nrow(nndf))
test_idx <- setdiff(1:nrow(nndf), train_idx)
# prepare training set and corresponding labels
train <- nndf[train_idx,]
# prepare testing set and corresponding labels
X_test <- nndf[test_idx,]
y_test <- nndf[test_idx, "class"]
# create model with a single hidden layer containing 500 neurons
model <- nnet(nndf$class~., train, maxit=150, size=10)
# prediction
X_pred <- predict(train, type="raw")
Assumption
All the variable in your dataset(nndf) is categorical.
Steps
one_hot method
one_hot_df <- one_hot(nndf[, -13]) # 13 is the index of `class` variable.
model.matrix method
model_mat_df <- model.matrix( ~ . - 1, nndf[, -13])
Convert class
as factor and add it either of above dfs.
class <- as.factor(nndf$class)
final_df <- cbind(model_mat_df, class)
Split final_df
into train and test and use that in the model.
nnet(class~., train, maxit=150, size=10)