How can I use pre-trained models to train video classification model? My dataset shape is (4000,10,150,150,1), I try to classify human action recognition with Conv2D TimeDistributed. I can train without transfer learning but I get a poor accuracy. What I have tried:
from keras.applications import VGG16
conv_base = VGG16(weights='imagenet',
include_top=False,
input_shape=(150, 150, 3))
model = models.Sequential()
model.add(conv_base)
model.add(TimeDistributed(Conv2D(96, (3, 3), padding='same',
input_shape=x_train.shape[1:])))
model.add(TimeDistributed(Activation('relu')))
model.add(TimeDistributed(Conv2D(128, (3, 3))))
model.add(TimeDistributed(Activation('relu')))
model.add(TimeDistributed(MaxPooling2D(pool_size=(2, 2))))
model.add(TimeDistributed(Dropout(0.35)))
.
.
.
.
But I got ValueError: strides should be of length 1, 1 or 3 but was 2
Someone has any idea?
I'm assuming you have 10 frames for each video. It's a simple model which uses VGG16 features (GloabAveragePooling) for each frame, and LSTM to classify the frame sequences.
You can experiment by adding a few more layers, changing hyperparameters.
N.B: There are many inconsistencies in your model including passing 5-d data to VGG16 directly which expects 4-d data.
from tensorflow.keras.layers import *
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.optimizers import Adam
import tensorflow as tf
import numpy as np
from tensorflow.keras.applications import VGG16
conv_base = VGG16(weights='imagenet',
include_top=False,
input_shape=(150, 150, 3))
IMG_SIZE=(150,150,3)
num_class = 3
def create_base():
conv_base = VGG16(weights='imagenet',
include_top=False,
input_shape=(150, 150, 3))
x = GlobalAveragePooling2D()(conv_base.output)
base_model = Model(conv_base.input, x)
return base_model
conv_base = create_base()
ip = Input(shape=(10,150,150,3))
t_conv = TimeDistributed(conv_base)(ip) # vgg16 feature extractor
t_lstm = LSTM(10, return_sequences=False)(t_conv)
f_softmax = Dense(num_class, activation='softmax')(t_lstm)
model = Model(ip, f_softmax)
model.summary()
Model: "model_5"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_32 (InputLayer) [(None, 10, 150, 150, 3)] 0
_________________________________________________________________
time_distributed_4 (TimeDist (None, 10, 512) 14714688
_________________________________________________________________
lstm_1 (LSTM) (None, 10) 20920
_________________________________________________________________
dense (Dense) (None, 3) 33
=================================================================
Total params: 14,735,641
Trainable params: 14,735,641
Non-trainable params: 0
________________________