pandasnumpytensorflow

Load numpy array from pandas dataframe into tensorflow dataset


I'm trying to load my pandas dataframe (df) into a Tensorflow dataset with the following command:

target = df['label']
features = df['encoded_sentence']

dataset = tf.data.Dataset.from_tensor_slices((features.values, target.values))

Here's an excerpt from my pandas dataframe:

+-------+-----------------------+------------------+
| label | sentence              | encoded_sentence |
+-------+-----------------------+------------------+
| 0     | Hello world           | [5, 7]           |
+-------+-----------------------+------------------+
| 1     | my name is john smith | [1, 9, 10, 2, 6] |
+-------+-----------------------+------------------+
| 1     | Hello! My name is     | [5, 3, 9, 10]    |
+-------+-----------------------+------------------+
| 0     | foo baar              | [8, 4]           |
+-------+-----------------------+------------------+

# df.dtypes gives me:
label                int8
sentence             object
encoded_sentencee    object

But it keeps giving me a Value Error:

ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type list).

Can anyone tell me how to use the encoded sentences in my Tensorflow dataset? Help would be greatly appreciated!


Solution

  • You can make your Pandas values into a ragged tensor first and then make the dataset from it:

    import tensorflow as tf
    import pandas as pd
    
    df = pd.DataFrame({'label': [0, 1, 1, 0],
                       'sentence': ['Hello world', 'my name is john smith',
                                    'Hello! My name is', 'foo baar'],
                       'encoded_sentence': [[5, 7], [1, 9, 10, 2, 6],
                                            [5, 3, 9, 10], [8, 4]]})
    features = tf.ragged.stack(list(df['encoded_sentence']))
    target = tf.convert_to_tensor(df['label'].values)
    dataset = tf.data.Dataset.from_tensor_slices((features, target))
    for f, t in dataset:
        print(f.numpy(), t.numpy())
    

    Output:

    [5 7] 0
    [ 1  9 10  2  6] 1
    [ 5  3  9 10] 1
    [8 4] 0
    

    Note you may want to use padded_batch to get batches of examples from the dataset.

    EDIT: Since padded-batching does not seem to work with a dataset made from a ragged tensor at the moment, you can also convert the ragged tensor to a regular one first:

    import tensorflow as tf
    import pandas as pd
    
    df = pd.DataFrame({'label': [0, 1, 1, 0],
                       'sentence': ['Hello world', 'my name is john smith',
                                    'Hello! My name is', 'foo baar'],
                       'encoded_sentence': [[5, 7], [1, 9, 10, 2, 6],
                                            [5, 3, 9, 10], [8, 4]]})
    features_ragged = tf.ragged.stack(list(df['encoded_sentence']))
    features = features_ragged.to_tensor(default_value=-1)
    target = tf.convert_to_tensor(df['label'].values)
    dataset = tf.data.Dataset.from_tensor_slices((features, target))
    batches = dataset.batch(2)
    for f, t in batches:
        print(f.numpy(), t.numpy())
    

    Output:

    [[ 5  7 -1 -1 -1]
     [ 1  9 10  2  6]] [0 1]
    [[ 5  3  9 10 -1]
     [ 8  4 -1 -1 -1]] [1 0]