How can I optimize the number of layers and hidden layer size in a neural network using MLPClassifier
from sklearn and skopt
?
Usually I'd specify my space something like:
Space([Integer(name = 'alpha_2', low = 1, high = 2),
Real(10**-5, 10**0, "log-uniform", name='alpha_2')])
( let's say hyperparameters alpha_1
and alpha_2
).
With the neural network implementation in sklearn I need to tune hidden_layer_sizes
which is a tuple:
hidden_layer_sizes : tuple, length = n_layers - 2, default=(100,)
The ith element represents the number of neurons in the ith
hidden layer.
How can I represent this in Space
?
If you are using gp_minimize
you can include the number of hidden layers and the neurons per layer as parameters in Space
. Inside the definition of the objective function you can manually create the hyperparameter hidden_layer_sizes
.
This is an example from the scikit-optimize homepage, now using an MLPRegressor
:
import numpy as np
from sklearn.datasets import load_boston
from sklearn.neural_network import MLPRegressor
from sklearn.model_selection import cross_val_score
from skopt.space import Real, Integer, Categorical
from skopt.utils import use_named_args
from skopt import gp_minimize
boston = load_boston()
X, y = boston.data, boston.target
n_features = X.shape[1]
reg = MLPRegressor(random_state=0)
space=[
Categorical(['tanh','relu'],name='activation'),
Integer(1,4,name='n_hidden_layer'),
Integer(200,2000,name='n_neurons_per_layer')]
@use_named_args(space)
def objective(**params):
n_neurons=params['n_neurons_per_layer']
n_layers=params['n_hidden_layer']
# create the hidden layers as a tuple with length n_layers and n_neurons per layer
params['hidden_layer_sizes']=(n_neurons,)*n_layers
# the parameters are deleted to avoid an error from the MLPRegressor
params.pop('n_neurons_per_layer')
params.pop('n_hidden_layer')
reg.set_params(**params)
return -np.mean(cross_val_score(reg, X, y, cv=5, n_jobs=-1,
scoring="neg_mean_absolute_error"))
res_gp = gp_minimize(objective, space, n_calls=50, random_state=0)