I was wondering about how to find the smallest circumcircle of an irregular polygon. I've worked with spatial polygons in R.
I want to reproduce some of the fragstats metrics in a vector mode because I had hard times with the package 'landscapemetrics' for a huge amount of data. In specific I would like to implement the circle (http://www.umass.edu/landeco/research/fragstats/documents/Metrics/Shape%20Metrics/Metrics/P11%20-%20CIRCLE.htm). So far, I could not find the formula or script for the smallest circumcircle.
All your comments are more than welcome.
Than you
As I mentioned in a comment, I don't know of existing R code for this, but a brute force search should be fast enough if you don't have too many points that need to be in the circle. I just wrote this one. The center()
function is based on code from Wikipedia for drawing a circle around a triangle; circumcircle()
is the function you want, found by brute force search through all circles that pass through 2 or 3 points in the set. On my laptop it takes about 4 seconds to handle 100 points. If you have somewhat bigger sets, you can probably get tolerable results by translating to C++, but it's an n^4
growth rate, so you'll need a better solution
for a really large set.
center <- function(D) {
if (NROW(D) == 0)
matrix(numeric(), ncol = 2)
else if (NROW(D) == 1)
D
else if (NROW(D) == 2) {
(D[1,] + D[2,])/2
} else if (NROW(D) == 3) {
B <- D[2,] - D[1,]
C <- D[3,] - D[1,]
Dprime <- 2*(B[1]*C[2] - B[2]*C[1])
if (Dprime == 0) {
drop <- which.max(c(sum((B-C)^2), sum(C^2), sum(B^2)))
center(D[-drop,])
} else
c((C[2]*sum(B^2) - B[2]*sum(C^2))/Dprime,
(B[1]*sum(C^2) - C[1]*sum(B^2))/Dprime) + D[1,]
} else
center(circumcircle(D))
}
radius <- function(D, U = center(D))
sqrt(sum((D[1,] - U)^2))
circumcircle <- function(P) {
n <- NROW(P)
if (n < 3)
return(P)
P <- P[sample(n),]
bestset <- NULL
bestrsq <- Inf
# Brute force search
for (i in 1:(n-1)) {
for (j in (i+1):n) {
D <- P[c(i,j),]
U <- center(D)
rsq <- sum((D[1,] - U)^2)
if (rsq >= bestrsq)
next
failed <- FALSE
for (k in (1:n)[-j][-i]) {
Pk <- P[k,,drop = FALSE]
if (sum((Pk - U)^2) > rsq) {
failed <- TRUE
break
}
}
if (!failed) {
bestset <- c(i,j)
bestrsq <- rsq
}
}
}
# Look for the best 3 point set
for (i in 1:(n-2)) {
for (j in (i+1):(n-1)) {
for (l in (j+1):n) {
D <- P[c(i,j,l),]
U <- center(D)
rsq <- sum((D[1,] - U)^2)
if (rsq >= bestrsq)
next
failed <- FALSE
for (k in (1:n)[-l][-j][-i]) {
Pk <- P[k,,drop = FALSE]
if (sum((Pk - U)^2) > rsq) {
failed <- TRUE
break
}
}
if (!failed) {
bestset <- c(i,j,l)
bestrsq <- rsq
}
}
}
}
P[bestset,]
}
showP <- function(P, ...) {
plot(P, asp = 1, type = "n", ...)
text(P, labels = seq_len(nrow(P)))
}
showD <- function(D) {
U <- center(D)
r <- radius(D, U)
theta <- seq(0, 2*pi, len = 100)
lines(U[1] + r*cos(theta), U[2] + r*sin(theta))
}
n <- 100
P <- cbind(rnorm(n), rnorm(n))
D <- circumcircle(P)
showP(P)
showD(D)
This shows the output