pythonopencvopticalflow

cv2 Farneback Optical FLow values are too low


I'm trying to compute optical flow between two frames and then warp the previous frame using the computed optical flow. I found cv2 has Farneback Optical FLow and so I'm using that to compute Flow. I took the default parameters from the cv2 tutorial and I'm warping the frame using the code given in this answer. But when I see the warped frame, it is exactly as previous frame and no change (arrays are equal).

With further debugging, I found that the computed flow values are too low. Why is this happening? Am I doing something wrong?

Code:

def get_optical_flow(prev_frame: numpy.ndarray, next_frame: numpy.ndarray) -> numpy.ndarray:
    prev_gray = skimage.color.rgb2gray(prev_frame)
    next_gray = skimage.color.rgb2gray(next_frame)
    flow = cv2.calcOpticalFlowFarneback(prev_gray, next_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
    return flow


def warp_frame(prev_frame: numpy.ndarray, flow: numpy.ndarray):
    h, w = flow.shape[:2]
    flow = -flow
    flow[:,:,0] += numpy.arange(w)
    flow[:,:,1] += numpy.arange(h)[:,numpy.newaxis]
    # res = cv2.remap(img, flow, None, cv2.INTER_LINEAR)
    next_frame = cv2.remap(prev_frame, flow, None, cv2.INTER_LINEAR)
    return next_frame


def demo1():
    prev_frame_path = Path('./frame025.png')
    next_frame_path = Path('./frame027.png')
    prev_frame = skimage.io.imread(prev_frame_path.as_posix())
    next_frame = skimage.io.imread(next_frame_path.as_posix())
    flow = get_optical_flow(prev_frame, next_frame)
    print(f'Flow: max:{flow.max()}, min:{flow.min()}, mean:{flow.__abs__().mean()}')
    warped_frame = warp_frame(prev_frame, flow)

    print(numpy.array_equal(prev_frame, warped_frame))

    pyplot.subplot(1,3,1)
    pyplot.imshow(prev_frame)
    pyplot.subplot(1,3,2)
    pyplot.imshow(next_frame)
    pyplot.subplot(1,3,3)
    pyplot.imshow(warped_frame)
    pyplot.show()
    return

Input Images: Image1 Image2

Output:
Warped Image is exactly the same as prev image, while it should look like next image.
enter image description here

Any help is appreciated!


Solution

  • The issue is with converting the rgb frames to gray. skimage.color.rgb2gray() changes the intensity range from [0,255] to [0,1]. Changing it back to [0,255] worked!

    def get_optical_flow(prev_frame: numpy.ndarray, next_frame: numpy.ndarray) -> numpy.ndarray:
        prev_gray = (skimage.color.rgb2gray(prev_frame) * 255).astype('uint8')
        next_gray = (skimage.color.rgb2gray(next_frame) * 255).astype('uint8')
        flow = cv2.calcOpticalFlowFarneback(prev_gray, next_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
        return flow