I have two pandas dataframes, each with two columns: a measurement and a timestamp. I need to multiply the first differences of the measurements, but only if there is a time overlap between the two measurement intervals. How can I do this efficiently, as the size of the dataframes gets large? Example:
dfA
mesA timeA
0 125 2015-01-14 04:44:49
1 100 2015-01-14 05:16:23
2 115 2015-01-14 08:57:10
dfB
mesB timeB
0 140 2015-01-14 00:13:17
1 145 2015-01-14 08:52:01
2 120 2015-01-14 11:31:44
Here I would multiply (100-125)*(145-140)
since there is a time overlap between the intervals [04:44:49, 05:16:23]
and [00:13:17, 08:52:01]
, but not (100-125)
and(120-145)
, since there isn't one. Similarly, I would have (115-100)*(145-140)
but also (115-100)*(120-145)
, since both have a time overlap.
In the end I will have to sum all the relevant products in a single value, so the result need not be a dataframe. In this case:
s = (100-125)*(145-140)+(115-100)*(145-140)+(115-100)*(120-145) = -425
My current solution:
s = 0
for i in range(1, len(dfA)):
startA = dfA['timeA'][i-1]
endA = dfA['timeA'][i]
for j in range(1, len(dfB)):
startB = dfB['timeB'][j-1]
endB = dfB['timeB'][j]
if (endB>startA) & (startB<endA):
s+=(dfA['mesA'][i]-dfA['mesA'][i-1])*(dfB['mesB'][j]-dfB['mesB'][j-1])
Although it seems to work, it is very inefficient and becomes impractical with very large datasets. I believe it could be vectorized more efficiently, perhaps using numexpr
, but I still haven't found a way.
EDIT: other data
mesA timeA
0 125 2015-01-14 05:54:03
1 100 2015-01-14 11:39:53
2 115 2015-01-14 23:58:13
mesB timeB
0 110 2015-01-14 10:58:32
1 120 2015-01-14 13:30:00
2 135 2015-01-14 22:29:26
s = 125
Edit: the original answer did not work, so I came up with another version that is not vectorize but they need to be sorted by date.
arrA = dfA.timeA.to_numpy()
startA, endA = arrA[0], arrA[1]
arr_mesA = dfA.mesA.diff().to_numpy()
mesA = arr_mesA[1]
arrB = dfB.timeB.to_numpy()
startB, endB = arrB[0], arrB[1]
arr_mesB = dfB.mesB.diff().to_numpy()
mesB = arr_mesB[1]
s = 0
i, j = 1, 1
imax = len(dfA)-1
jmax = len(dfB)-1
while True:
if (endB>startA) & (startB<endA):
s+=mesA*mesB
if (endB>endA) and (i<imax):
i+=1
startA, endA, mesA= endA, arrA[i], arr_mesA[i]
elif j<jmax:
j+=1
startB, endB, mesB = endB, arrB[j], arr_mesB[j]
else:
break
Original not working answer
The idea is to great category with pd.cut
based on the value in dfB['timeB']
in both dataframes to see where they could overlap. Then calculate the diff
in measurements. merge
both dataframes on categories and finally multiply and sum
the whole thing
# create bins
bins_dates = [min(dfB['timeB'].min(), dfA['timeA'].min())-pd.DateOffset(hours=1)]\
+ dfB['timeB'].tolist()\
+ [max(dfB['timeB'].max(), dfA['timeA'].max())+pd.DateOffset(hours=1)]
# work on dfB
dfB['cat'] = pd.cut(dfB['timeB'], bins=bins_dates,
labels=range(len(bins_dates)-1), right=False)
dfB['deltaB'] = -dfB['mesB'].diff(-1).ffill()
# work on dfA
dfA['cat'] = pd.cut(dfA['timeA'], bins=bins_dates,
labels=range(len(bins_dates)-1), right=False)
# need to calcualte delta for both start and end of intervals
dfA['deltaAStart'] = -dfA['mesA'].diff(-1)
dfA['deltaAEnd'] = dfA['mesA'].diff().mask(dfA['cat'].astype(float).diff().eq(0))
# in the above method, for the end of interval, use a mask to not count twice
# intervals that are fully included in one interval of B
# then merge and calcualte the multiplication you are after
df_ = dfB[['cat', 'deltaB']].merge(dfA[['cat','deltaAStart', 'deltaAEnd']])
s = (df_['deltaB'].to_numpy()[:,None]*df_[['deltaAStart', 'deltaAEnd']]).sum().sum()
print (s)
#-425.0