from keras.wrappers.scikit_learn import KerasClassifier, KerasRegressor
import eli5
from eli5.sklearn import PermutationImportance
model = Sequential()
model.add(LSTM(units=30,return_sequences= True, input_shape=(X.shape[1],421)))
model.add(Dropout(rate=0.2))
model.add(LSTM(units=30, return_sequences=True))
model.add(LSTM(units=30))
model.add(Dense(units=1, activation='relu'))
perm = PermutationImportance(model, scoring='accuracy',random_state=1).fit(X, y, epochs=500, batch_size=8)
eli5.show_weights(perm, feature_names = X.columns.tolist())
I am running an LSTM just to see the feature importance of my dataset containing 400+ features. I used the Keras scikit-learn wrapper to use eli5's PermutationImportance function. But the code is returning
ValueError: Found array with dim 3. Estimator expected <= 2.
The code runs smoothly if I use model.fit()
but can't debug the error of the permutation importance. Anyone know what is wrong?
eli5
's scikitlearn
implementation for determining permutation importance can only process 2d arrays while keras
' LSTM
layers require 3d arrays. This error is a known issue but there appears to be no solution yet.
I understand this does not really answer your question of getting eli5
to work with LSTM (because it currently can't), but I encountered the same problem and used another library called SHAP
to get the feature importance of my LSTM model. Here is some of my code to help you get started:
import shap
DE = shap.DeepExplainer(model, X_train) # X_train is 3d numpy.ndarray
shap_values = DE.shap_values(X_validate_np, check_additivity=False) # X_validate is 3d numpy.ndarray
shap.initjs()
shap.summary_plot(
shap_values[0],
X_validate,
feature_names=list_of_your_columns_here,
max_display=50,
plot_type='bar')
Here is an example of the graph which you can get:
Hope this helps.