I have multiple jsons coming from any restapi's and I don't know the schema of it. I am unable to use the explode function of dataframes , because i am unaware about the column names, which is getting created by spark api.
1.Can we store the keys of the nested arrays elements keys by decoding values from dataframe.schema.fields
, As spark only provides the value part in the rows of the dataframe and take the top level key as column name.
Dataframe --
+--------------------+
| stackoverflow|
+--------------------+
|[[[Martin Odersky...|
+--------------------+
Is there any optimal way to flatten the json by using the dataframe methods via determining the schema at the run time.
Sample Json -:
{
"stackoverflow": [{
"tag": {
"id": 1,
"name": "scala",
"author": "Martin Odersky",
"frameworks": [
{
"id": 1,
"name": "Play Framework"
},
{
"id": 2,
"name": "Akka Framework"
}
]
}
},
{
"tag": {
"id": 2,
"name": "java",
"author": "James Gosling",
"frameworks": [
{
"id": 1,
"name": "Apache Tomcat"
},
{
"id": 2,
"name": "Spring Boot"
}
]
}
}
]
}
Note - We need to do all the operations in dataframe , because there is a huge amount of data , that is coming and we cannot parse each and every json.
Try to avoid flattening all columns as much as possible.
Created helper function & You can directly call df.explodeColumns
on DataFrame.
Below code will flatten multi level array & struct type columns.
scala> :paste
// Entering paste mode (ctrl-D to finish)
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import scala.annotation.tailrec
import scala.util.Try
implicit class DFHelpers(df: DataFrame) {
def columns = {
val dfColumns = df.columns.map(_.toLowerCase)
df.schema.fields.flatMap { data =>
data match {
case column if column.dataType.isInstanceOf[StructType] => {
column.dataType.asInstanceOf[StructType].fields.map { field =>
val columnName = column.name
val fieldName = field.name
col(s"${columnName}.${fieldName}").as(s"${columnName}_${fieldName}")
}.toList
}
case column => List(col(s"${column.name}"))
}
}
}
def flatten: DataFrame = {
val empty = df.schema.filter(_.dataType.isInstanceOf[StructType]).isEmpty
empty match {
case false =>
df.select(columns: _*).flatten
case _ => df
}
}
def explodeColumns = {
@tailrec
def columns(cdf: DataFrame):DataFrame = cdf.schema.fields.filter(_.dataType.typeName == "array") match {
case c if !c.isEmpty => columns(c.foldLeft(cdf)((dfa,field) => {
dfa.withColumn(field.name,explode_outer(col(s"${field.name}"))).flatten
}))
case _ => cdf
}
columns(df.flatten)
}
}
// Exiting paste mode, now interpreting.
import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.functions._
import org.apache.spark.sql.types._
import scala.annotation.tailrec
import scala.util.Try
defined class DFHelpers
Flattened Columns
scala> df.printSchema
root
|-- stackoverflow: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- tag: struct (nullable = true)
| | | |-- author: string (nullable = true)
| | | |-- frameworks: array (nullable = true)
| | | | |-- element: struct (containsNull = true)
| | | | | |-- id: long (nullable = true)
| | | | | |-- name: string (nullable = true)
| | | |-- id: long (nullable = true)
| | | |-- name: string (nullable = true)
scala> df.explodeColumns.printSchema
root
|-- author: string (nullable = true)
|-- frameworks_id: long (nullable = true)
|-- frameworks_name: string (nullable = true)
|-- id: long (nullable = true)
|-- name: string (nullable = true)
scala>