import pandas as pd
df = {'a': [1,1,1], 'b': [2,2,2], 'c': [3,3,3], 'd': [4,4,4], 'e': [5,5,5], 'f': [6,6,6], 'g': [7,7,7]}
df1 = pd.DataFrame(df, columns = ['a', 'b', 'c', 'd', 'e', 'f', 'g'])
dg = {'h': [10,10,10], 'i': [14,14,14], 'j': [18,18,18], 'k': [22,22,22]}
df2 = pd.DataFrame(dg, columns = ['h', 'i', 'j', 'k'])
df1
a b c d e f g
0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7
2 1 2 3 4 5 6 7
df1 is my original data frame. I would like to create another dataframe by adding each consecutive 4 columns (rolling column sum).
df2
h i j k
0 10 14 18 22
1 10 14 18 22
2 10 14 18 22
df2 is the resulting dataframe after adding 4 consecutive columns of df1.
For example: column h in df2 is the sum of columns a, b, c, d in df1; column i in df2 is the sum of columns b, c, d, e in df1; column j in df2 is the sum of columns c, d, e, f in df1; column k in df2 is the sum of columns d, e, f, g in df1.
I could not find any similar question/answer/example like this. I would appreciate any help.
You can use rolling over 4 columns and take the sum. Finally drop the first 3 columns.
df1.rolling(4, axis=1).sum().dropna(axis=1)
d e f g
0 10.0 14.0 18.0 22.0
1 10.0 14.0 18.0 22.0
2 10.0 14.0 18.0 22.0