I normally work with lme4
package, but the glmmTMB
package is increasingly becoming better suited to work with highly complicated data (think overdispersion and/or zero-inflation).
Is there a way to extract posterior modes and credible intervals from
glmmTMB
models, similar to how it is done forlme4
models (example here).
Details:
I am working with count data (available here) that are zero-inflated and overdispersed and have random effects. The package best suited to work with this sort of data is the glmmTMB
(details here). (Note two outliers: euc0==78
and np_other_grass==20
).
The data looks like this:
euc0 ea_grass ep_grass np_grass np_other_grass month year precip season prop_id quad
3 5.7 0.0 16.7 4.0 7 2006 526 Winter Barlow 1
0 6.7 0.0 28.3 0.0 7 2006 525 Winter Barlow 2
0 2.3 0.0 3.3 0.0 7 2006 524 Winter Barlow 3
0 1.7 0.0 13.3 0.0 7 2006 845 Winter Blaber 4
0 5.7 0.0 45.0 0.0 7 2006 817 Winter Blaber 5
0 11.7 1.7 46.7 0.0 7 2006 607 Winter DClark 3
The glmmTMB
model:
model<-glmmTMB(euc0 ~ ea_grass + ep_grass + np_grass + np_other_grass + (1|prop_id), data = euc, family= nbinom2) #nbimom2 lets var increases quadratically
summary(model)
confint(model) #this gives the confidence intervals
How I would normally extract the posterior mode and credible intervals for a lmer
/glmer
model:
#extracting model estimates and credible intervals
sm.model <-arm::sim(model, n.sim=1000)
smfixef.model = sm.model@fixef
smfixef.model =coda::as.mcmc(smfixef.model)
MCMCglmm::posterior.mode(smfixef.model) #mode of the distribution
coda::HPDinterval(smfixef.model) #credible intervals
#among-brood variance
bid<-sm.model@ranef$prop_id[,,1]
bvar<-as.vector(apply(bid, 1, var)) #between brood variance posterior distribution
bvar<-coda::as.mcmc(bvar)
MCMCglmm::posterior.mode(bvar) #mode of the distribution
coda::HPDinterval(bvar) #credible intervals
Most of an answer:
arm::sim()
is doing.library(MASS)
pp <- fixef(model)$cond
vv <- vcov(model)$cond
samp <- MASS::mvrnorm(1000, mu=pp, Sigma=vv)
(then use the rest of your method above).
library(tmbstan)
library(rstan)
library(coda)
library(emdbook) ## for lump.mcmc.list(), or use runjags::combine.mcmc()
t2 <- system.time(m2 <- tmbstan(model$obj))
m3 <- rstan::As.mcmc.list(m2)
lattice::xyplot(m3,layout=c(5,6))
m4 <- emdbook::lump.mcmc.list(m3)
coda::HPDinterval(m4)
It may be helpful to know that the theta
column of m4
is the log of the among-group standard standard deviation ...
(See vignette("mcmc", package="glmmTMB")
for a little bit more information ...)