Define x
as:
>>> import tensorflow as tf
>>> x = tf.constant([1, 2, 3])
Why does this normal tensor multiplication work fine with broacasting:
>>> tf.constant([[1, 2, 3], [4, 5, 6]]) * tf.expand_dims(x, axis=0)
<tf.Tensor: shape=(2, 3), dtype=int32, numpy=
array([[ 1, 4, 9],
[ 4, 10, 18]], dtype=int32)>
while this one with a ragged tensor does not?
>>> tf.ragged.constant([[1, 2, 3], [4, 5, 6]]) * tf.expand_dims(x, axis=0)
*** tensorflow.python.framework.errors_impl.InvalidArgumentError: Expected 'tf.Tensor(False, shape=(), dtype=bool)' to be true. Summarized data: b'Unable to broadcast: dimension size mismatch in dimension'
1
b'lengths='
3
b'dim_size='
3, 3
How can I get a 1-D tensor to broadcast over a 2-D ragged tensor? (I am using TensorFlow 2.1.)
The problem will be resolved if you add ragged_rank=0
to the Ragged Tensor, as shown below:
tf.ragged.constant([[1, 2, 3], [4, 5, 6]], ragged_rank=0) * tf.expand_dims(x, axis=0)
Complete working code is:
%tensorflow_version 2.x
import tensorflow as tf
x = tf.constant([1, 2, 3])
print(tf.ragged.constant([[1, 2, 3], [4, 5, 6]], ragged_rank=0) * tf.expand_dims(x, axis=0))
Output of the above code is:
tf.Tensor(
[[ 1 4 9]
[ 4 10 18]], shape=(2, 3), dtype=int32)
One more correction.
As per the definition of Broadcasting, Broadcasting is the process of **making** tensors with different shapes have compatible shapes for elementwise operations
, there is no need to specify tf.expand_dims
explicitly, Tensorflow will take care of it.
So, below code works and demonstrates the property of Broadcasting well:
%tensorflow_version 2.x
import tensorflow as tf
x = tf.constant([1, 2, 3])
print(tf.ragged.constant([[1, 2, 3], [4, 5, 6]], ragged_rank=0) * x)
Output of the above code is:
tf.Tensor(
[[ 1 4 9]
[ 4 10 18]], shape=(2, 3), dtype=int32)
For more information, please refer this link.
Hope this helps. Happy Learning!